ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS
ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS
4th Edition
ISBN: 9781119330745
Author: FELDER
Publisher: WILEY
Question
Book Icon
Chapter 2, Problem 2.51P
Interpretation Introduction

(a)

Interpretation:

The data should be plotted on logarithmic axes.

Concept introduction:

Assume x and y are two variables where y varies according to x.

The following (x,y) data are recorded,

x 0.5 1.4 84
y 2.2 4.3 6.15

So, we can draw a graph in logarithmic axes by taking x variable as the horizontal axis and y variable as the vertical axis.

Interpretation Introduction

(b)

Interpretation:

The co-efficient of power law expression should be determined.

Concept introduction:

Assume x and y are two variables where y varies according to x.

The following (x,y) data are recorded,

x 0.5 1.4 84
y 2.2 4.3 6.15

So, we can draw a graph in logarithmic axes by taking x variable as the horizontal axis and y variable as the vertical axis.

Interpretation Introduction

(c)

Interpretation:

The calculated line on the same plot as the data should be determined,

Concept introduction:

The plot is given as,y=axb

Where,a = 3.08 and b = 0.168.
In addition, data set is,

x 0.5 1.4 84
y 2.2 4.3 6.15

Blurred answer
Students have asked these similar questions
۱۱۳ ۱۱۱۰ ۱۱۰ A + C Chegg Learn on the go = Chegg © chegg.com/homewo Open in app EN-US QUESTIONS AND PROBLEMS 4.1. With 100,000 BPD of the following crude (API = 36), estimate the products of the atmospheric distillation column. If the atmospheric residue of the crude is taken at 650+ F. It enters in a vacuum distilla- tion tower to give three products: light vacuum gas oil (650-850 °F), heavy vacuum gas oil (850-1050 °F) and vacuum residue (1050+ °F). Calculate the mass flow rate of these products. Then calculate the sulphur content (lb/hr) for each product. ASTM D86 (°F) vol% Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 3021 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 4821 8.0 31.41 0.8140 527 10,7 42.1 0.8250 584 5.0 47.1 0.8450 6361 10,0 57.1 0.8540 689 7,8 64.9 0.8630 7421 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310 Show transcribed image text Here's the best way to solve it. This problem…
Q1/obtain the transfer function for the block diagram shown in the figure below: G4 G
(Population density parameters from sieve analysis data)2 One hundred fifty grams of crystals separated from one litre of suspension from an MSMPR crystallizer is subjected to screen analysis to get the following data: Tyler mesh Mass(g) 12/14 28.5 14/20 29.2 20/28 28/35 35/48 below 48 mesh 37.5 27 24.7 3.1 Mesh no./ screen opening(um) data: 12/1410 μm; 14/1190; 20/841; 28/595; 35/420; 48/297. The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the slurry is 250 litre per hour. Given pc = 1400 kg/m³ and volume shape factor o, = 0.42, determine the crystal growth rate and the zero-size population density of the crystals. What is the rate of nucleation, Bº?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The