DESIGN OF MACHINERY
6th Edition
ISBN: 9781260113310
Author: Norton
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.19P
Find an adjustable arm desk lamp of the type shown in Figure P2-2. Measure it and sketch it to scale. Calculate its mobility and Grashof condition. Make a cardboard model. Analyze it with a free-body diagram. Describe how it keeps itself stable. Are there any positions in which it loses stability? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure on the left, below, shows a non-uniform bent rod with a mass of 5 kg. Your job
is to determine the location of the center of gravity of this rod. You design an experiment:
you connect a pin and cable to the rod such that it safely stays in static equilibrium under
a force P that you apply. Then, you apply forces between 0-100 N, and measure the tension
force on the cable using a cable tension meter. The results of your experiment are shown
in the figure, on the right. Using this experiment, calculate (approximately) the horizontal
distance (x in the figure) between point A and the center of gravity G of the bent rod.
B
C
O
I
20 cm
20 cm
60°
D
50 cm
Tension measurement [N]
60
50
40
30
20
-10
0
10
real data
estimated fit
20
30
40
ܐܐܝ
50
P[N]
60
70
80
90
100
Please provide detailed working/explaination why the two images might be true/false regarding static equilibrium?
Since the sum of the torques must be zero you are free to choose any pivot point to find each torque.
To solve static equilibrium problems, you apply the following process.
Isolate the object that is in equilibrium
Draw a pseudo-real diagram showing forces and where they act.
Choose a good pivot point and a good coordinate system.
Generate the sum of torques and sum of forces equations.
Maths bit – using these equations to solve for the desired quantity
Assess – once you have an answer ask does this make sense?
Which of the following statements about static equilibrium are true?
or the spring system given in Figure 1, create the clement matrices as well as the global stiffness and force matrix,
note that k-1.
-ww-
Figure 1
Chapter 2 Solutions
DESIGN OF MACHINERY
Ch. 2 - Find three (or other number as assigned) of the...Ch. 2 - How many DOF do you have in your wrist and hand...Ch. 2 - How many DOF do the following joints have? Your...Ch. 2 - How many DOF do the following have in their normal...Ch. 2 - Are the joints in Problem 2-3 force closed or form...Ch. 2 - Describe the motion of the following items as pure...Ch. 2 - Calculate the mobility of the linkages assigned...Ch. 2 - Identify the items in Figure P2-1 as mechanisms,...Ch. 2 - Use linkage transformation on the linkage of...Ch. 2 - Prob. 2.10P
Ch. 2 - Use number synthesis to find all the possible link...Ch. 2 - Prob. 2.12PCh. 2 - Use linkage transformation to create a 1-DOF...Ch. 2 - Use linkage transformation to create a 1-DOF...Ch. 2 - Calculate the Grashof condition of the fourbar...Ch. 2 - Prob. 2.16PCh. 2 - Describe the difference between a cam-follower...Ch. 2 - Examine an automobile hood hinge mechanism of the...Ch. 2 - Find an adjustable arm desk lamp of the type shown...Ch. 2 - The torque-speed curve for a 1/8 hp permanent...Ch. 2 - Find the mobility of the mechanisms in Figure...Ch. 2 - Find the Grashof condition and Barker...Ch. 2 - Find the rotatability of each loop of the...Ch. 2 - Find the mobility of the mechanisms in Figure...Ch. 2 - Find the mobility of the ice tongs in Figure P2-6:...Ch. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Find the mobility of the corkscrew in Figure P2-9.Ch. 2 - Figure P2-10 shows Watts sun and planet drive that...Ch. 2 - Figure P2-11 shows a bicycle handbrake lever...Ch. 2 - Figure P2-12 shows a bicycle brake caliper...Ch. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - The approximate torque-speed curve and its...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Sketch the equivalent linkage for the cam and...Ch. 2 - Describe the motion of the following rides,...Ch. 2 - For the mechanism in Figure P2-1 a, number the...Ch. 2 - Repeat Problem 2-38 for Figure P2-1b.Ch. 2 - Repeat Problem 2-38 for Figure P2-1c.Ch. 2 - Prob. 2.41PCh. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - Figure P2-20 shows a Rube Goldberg mechanism that...Ch. 2 - All the eightbar linkages in Figure 2-11 part 2...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Repeat Problem 2-38 for Figure P2-1f.Ch. 2 - Repeat Problem 2-38 for Figure P2-1g.Ch. 2 - For the example linkage shown in Figure 2-4 find...Ch. 2 - For the linkage shown in Figure 2-5b find the...Ch. 2 - Prob. 2.58PCh. 2 - Figure P2-21b shows a mechanism. Find its mobility...Ch. 2 - Prob. 2.60PCh. 2 - Figure P2-21 d shows a log transporter. Draw a...Ch. 2 - Figure P2-21e shows a plow mechanism attached to a...Ch. 2 - Figure P2-22 shows a Hart inversor sixbar linkage....Ch. 2 - Figure P2-23 shows the top view of the partially...Ch. 2 - Figure P2-24a shows the seat and seat-back of a...Ch. 2 - Figure P2-24b shows the mechanism used to extend...Ch. 2 - Figure P2-24b shows the mechanism used to extend...Ch. 2 - Figure P2-25 shows a sixbar linkage. Is it a Watt...Ch. 2 - Use number synthesis o find all the possible link...Ch. 2 - Use number synthesis to find all the possible link...Ch. 2 - Prob. 2.71PCh. 2 - For the mechanism in Figure P2-26, number the...Ch. 2 - Figure P2-27 shows a schematic of an exercise...Ch. 2 - Calculate the mobility of the linkage in Figure...Ch. 2 - Calculate the Grashof condition of the fourbar...Ch. 2 - The drum brake mechanism in Figure P2-4g is a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Torque Problem The diagram below shows the lower leg being held in a stationary. The torque acting to turn the leg in a clockwise direction is being generated by the weight of the leg and the weight of a barbel attached to the ankle. Using the information provided calculate the magnitude of the quadriceps force. LOWER LEG IN ANGULAR EQUILIBRIUM 15° Quadriceps muscle force 0.05m 0.14 m 50° 0.30m 90 Newtons 120 Newtons Show your calculations step by step here. Includes diagrams and short comments to explain your approach to solving the problem.arrow_forwardFree body diagram Draw the free body diagram (FBD) for this system. To draw the free body diagram, we assume that the bar is displaced a small amount in the positive direction of 0. Important: For the free body diagram, the forces also need to be labelled! You can draw the forces by clicking the application point (letters) and dragging or using the drop down with the 'draw' button. If you drew them by clicking and dragging, click the force vector to label it from the dropdown menu above. If the label on the force doesn't appear on the diagram, you haven't quite done it right and the question will keep getting graded as incorrect even if you have the correct arrows. Fs k2 Fry Fg k1 Frx Equation of Motion Since the bar undergoes rotational motion, Newton's second law is written by writing a sum of moments around the pivot point (sum of moments cause rotational motion). Positive moments are those that are in the direction that tend to move things in what is defined as the positive…arrow_forward1–2. Figure C1.2 shows a mechanism that is typical in the tank of a water closet. Note that flapper C is hollow and filled with trapped air. Carefully examine the configuration of the components in the mechanism. Then answer the following leading questions to gain insight into the operation of the mechanism. 1. As the handle A is rotated counterclockwise, what is the motion of flapper C? 2. When flapper C is raised, what effect is seen? 3. When flapper C is lifted, it tends to remain in an upward position for a period of time. What causes this tendency to keep the flapper lifted? 4. When will this tendency (to keep flapper C lifted) cease Plz connect me if you want to explan subject for me .... +962 79180149 Thxarrow_forward
- The figure shows a person wearing weight boots and doing lower leg flexion/extension exercise in a sitting position to strengthen the quadriceps muscles and a simple mechanical model of his leg. W1 is the weight of the lower leg, W0 is the weight of the boot, the magnitude of the pulling force applied to the tibia by the quadriceps muscles through the FM patellar tendon, the magnitude of the reaction force acting on the FJ tibiofemoral joint. Point O is the center of the tibiofemoral joint, point A is the point where the patellar tendon attaches to the tibia, point B is the center of gravity of the lower leg, point C is the center of gravity of the weight boot. The distances between point O and points A, B and C were measured as a=13 cm, b=27 cm and c=36 cm, respectively. The angle that the long axis of the tibia makes with the horizontal is β=34°, the angle between the line of action of the quadriceps muscle strength and the long axis of the tibia is α=18°. Points O, A, B and C lie…arrow_forwardThe figure shows a person wearing weight boots and doing lower leg flexion/extension exercise in a sitting position to strengthen the quadriceps muscles and a simple mechanical model of his leg. W1 is the weight of the lower leg, W0 is the weight of the boot, the magnitude of the pulling force applied to the tibia by the quadriceps muscles through the FM patellar tendon, the magnitude of the reaction force acting on the FJ tibiofemoral joint. Point O is the center of the tibiofemoral joint, point A is the point where the patellar tendon attaches to the tibia, point B is the center of gravity of the lower leg, point C is the center of gravity of the weight boot. The distances between point O and points A, B and C were measured as a=12 cm, b=24 cm and c=36 cm, respectively. The angle that the long axis of the tibia makes with the horizontal is β=39°, the angle between the line of action of the quadriceps muscle strength and the long axis of the tibia is α=16°. Points O, A, B and C lie…arrow_forwardThe figure shows a person wearing weight boots and doing lower leg flexion/extension exercise in a sitting position to strengthen the quadriceps muscles and a simple mechanical model of his leg. W1 is the weight of the lower leg, W0 is the weight of the boot, the magnitude of the pulling force applied to the tibia by the quadriceps muscles through the FM patellar tendon, the magnitude of the reaction force acting on the FJ tibiofemoral joint. Point O is the center of the tibiofemoral joint, point A is the point where the patellar tendon attaches to the tibia, point B is the center of gravity of the lower leg, point C is the center of gravity of the weight boot. The distances between point O and points A, B and C were measured as a=12 cm, b=24 cm and c=36 cm, respectively. The angle that the long axis of the tibia makes with the horizontal is β=39°, the angle between the line of action of the quadriceps muscle strength and the long axis of the tibia is α=16°. Points O, A, B and C lie…arrow_forward
- The figure shows a person wearing weight boots and doing lower leg flexion/extension exercise in a sitting position to strengthen the quadriceps muscles and a simple mechanical model of his leg. W1 is the weight of the lower leg, W0 is the weight of the boot, the magnitude of the pulling force applied to the tibia by the quadriceps muscles through the FM patellar tendon, the magnitude of the reaction force acting on the FJ tibiofemoral joint. Point O is the center of the tibiofemoral joint, point A is the point where the patellar tendon attaches to the tibia, point B is the center of gravity of the lower leg, point C is the center of gravity of the weight boot. The distances between point O and points A, B and C were measured as a=12 cm, b=24 cm and c=36 cm, respectively. The angle that the long axis of the tibia makes with the horizontal is β=39°, the angle between the line of action of the quadriceps muscle strength and the long axis of the tibia is α=16°. Points O, A, B and C lie…arrow_forwardThe figure shows a person wearing weight boots and doing lower leg flexion/extension exercise in a sitting position to strengthen the quadriceps muscles and a simple mechanical model of his leg. W1 is the weight of the lower leg, W0 is the weight of the boot, the magnitude of the pulling force applied to the tibia by the quadriceps muscles through the FM patellar tendon, the magnitude of the reaction force acting on the FJ tibiofemoral joint. Point O is the center of the tibiofemoral joint, point A is the point where the patellar tendon attaches to the tibia, point B is the center of gravity of the lower leg, point C is the center of gravity of the weight boot. The distances between point O and points A, B and C were measured as a=12 cm, b=24 cm and c=36 cm, respectively. The angle that the long axis of the tibia makes with the horizontal is β=39°, the angle between the line of action of the quadriceps muscle strength and the long axis of the tibia is α=16°. Points O, A, B and C lie…arrow_forwardFind the degrees of freedom of the given mechanism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Stresses Due to Fluctuating Loads Introduction - Design Against Fluctuating Loads - Machine Design 1; Author: Ekeeda;https://www.youtube.com/watch?v=3FBmQXfP_eE;License: Standard Youtube License