(a)
Interpretation:
Time constant for the circuit should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
(b)
Interpretation:
The current, voltage drops across the capacitor and the resistor during a charging cycle at given times should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
Connection between initial current and current across the capacitor (i) at given time during the charging is given by
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
(c)
Interpretation:
The current and voltage drops across the capacitor and the resistor during a discharging cycle at time 10 ms should be calculated.
Concept introduction:
The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.
Ohm’s law:
Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.
V = IR
The value of the voltage across the capacitor (Vc) at given time during the charging period can be given like this;
Vc = Voltage across the capacitor
Vs= Supply voltage
t = time
RC = time constant for RC circuit
Connection between initial current and current across the capacitor (i) at given time during the discharging is given by;

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
INSTRUMENTAL ANALYSIS-ACCESS >CUSTOM<
- Label each of the seven designated regions of the following multi-component, solid-liquid phase diagram for the Zinc - Magnesium system.arrow_forward22arrow_forwardPLEASE READ!!! I DONT WANT EXAMPLES, I DONT WANT WORDS OR PARAGRAPHS FOR THE MECHANISM!!! THANKS First image: QUESTION 6. I have to show, with ARROWS and STRUCTURES, the mechanism of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary. I also tried to draw the mechanism, tell me what to change. Please note that its an AMIDE thats formed not an AMINE the nitrogen has ONE hydrogen and one Phenyl-C-Phenyl. I already asked for this mechanism and got as a final product ...-NH2 not whats shown on the picture, thank you Ths second part. QUESTION 3. I just need a way to synthesize the lactone A, I already started please continue from where I left it Second image: I simply need the products, substrates or reagents, thank youarrow_forward
- Indicate how to prepare a 10% sodium hydroxide (NaOH) solution to a slightly alkaline pH.arrow_forwardCH, CH CH₂ CH₂ Phytyl side chain 5. What is the expected order of elution of compounds A-D below from a chromatography column packed with silica gel, eluting with hexane/ethyl acetate? C D OHarrow_forwardPlease analze my gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Attached is the following image for the order of column wells and my gel.arrow_forward
- 2.0arrow_forwardWrite the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 5 6 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! ☐arrow_forwardCompare these chromatograms of three anti-psychotic drugs done by HPLC and SFC. Why is there the difference in separation time for SFC versus HPLC? Hint, use the Van Deemter plot as a guide in answering this question. Why, fundamentally, would you expect a faster separation for SFC than HPLC, in general?arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
