Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.15P
To determine

(a)

The specific weight of the oil.

Expert Solution
Check Mark

Answer to Problem 2.15P

The specific weight of the oil is 55.2lbf/ft3.

Explanation of Solution

Concept Used:

Write the hydrostatic formula from gage B to gage C.

pB+γoil(hoil2)+(γwater)(hwater)=pC …… (I)

Here, the pressure of gage B is pB, the specific weight of oil is γoil, the height of oil column is hoil, the specific weight of water is γwater, the height of water column is hwater and pressure of gage C is pC.

The reading of gage B is 1.25lbf/in2 less than the gage reading C.

Write the expression for gage pressure C.

pC(1.25lbf/in2)=pBpC=pB+(1.25lbf/in2)pC=pB+(1.25lbf/in2)(144lbf/ft21lbf/in2)pC=pB+(180lbf/ft2) …… (II)

Substitute pB+(180lbf/ft2) for pC in Equation (I).

pB+γoil(hoil2)+(γwater)(hwater)=pB+(180lbf/ft2)γoil(hoil2)+(γwater)(hwater)=(180lbf/ft2) …… (III)

Substitute 2ft for hoil, 62.4lbf/ft3 for γwater and 2ft for hwater in Equation (III).

γoil(2ft2)+(62.4lbf/ft3)(2ft)=(180lbf/ft2)γoil(2ft2)=(55.2lbf/ft2)γoil=55.2lbf/ft3

Conclusion:

Thus, the specific weight of the oil is 55.2lbf/ft3.

To determine

(b)

The actual gage reading of C in lbf/in2.

Expert Solution
Check Mark

Answer to Problem 2.15P

The actual gage reading of C is 16.6lbf/in2.

Explanation of Solution

Calculate the actual gage reading of C.

pC=pa+γair(hair)+γoil(hoil)+γwater(hwater) …… (IV)

Here, the actual gage reading of C is pC, the pressure gage reading of A is pa, the specific weight of water is γwater, the height of water column is hwater, the specific weight of oil is γoil, the height of oil column is hoil, the specific weight of air is γair and the height of air column is hair.

Substitute 15lbf/in2 for pa, 0.0767lbf/ft3 for γair, 2ft for hair, 55.2lbf/ft3 for γoil, 2ft for hoil, 62.4lbf/ft3 for γwater and 2ft for hwater in Equation (IV).

pC=[(15lbf/in2)+(0.0767lbf/ft3)(2ft)+(55.2lbf/ft3)(2ft)+(62.4lbf/ft3)(2ft)]=(15lbf/in2)(144lbf/ft21lbf/in2)+(235.3534lbf/ft2)=(2395.3534lbf/ft2)(1lbf/in2144lbf/ft2)16.6lbf/in2

Conclusion:

Thus, the actual gage reading of C is 16.6lbf/in2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The figure illustrates the nonpermanent connection of a steel cylinder head to a grade 30 cast-iron pressure vessel using 73 bolts. A confined gasket seal has an effective sealing diameter D of 0.9 m. The cylinder pressure is cycled between a minimum pressure of zero and a maximum pressure p, of 535 kPa. For the specifications given in the table for the specific problem assigned, select a suitable bolt length from the preferred sizes. Use Table A-17 for calculation purposes. Parameter Head thickness, A Cylinder thickness, B Value 16 mm 25 mm Internal diameter of the cylinder, C 0.8 m Gasket sealing diameter, D Bolt circle diameter, E Outer diameter of the cylinder head, F 0.9 m 1.0 m 1.1 m Bolt grade ISO 10.9 Bolt diameter, d 10 mm F E D 111 Find a suitable bolt length. Then, determine the bolt stiffness, material stiffness and stiffness constant of the joint. The bolt length is The bolt stiffness is mm. MN/m. The material stiffness is | The stiffness constant is MN/m.
Problem 3 A rotating shaft of 20 mm diameter is simply supported. The shaft is loaded with a transverse load of 10 kN as shown in the figure. The shaft is made from AISI 1095 hot-rolled steel. The surface has been machined. The shaft operate at temperature T = 450 °C. Consider a reliability factor of 95%. Determine (a) Calculate the reaction forces R₁ and R2* (b) Draw the shear force and bending moment diagrams and determine the maximum bending moment and shear force. 200 mm 20 mm 10,000 N -50 mm- C A B R₁ Not to scale. (c) Determine the critical location of the shaft and the maximum effective stresses, (d) Calculate the static safety factor against yielding. (e) Determined the endurance limit, adjusted as necessary with Marin factors. (f) Calculate the fatigue factor of safety based on achieving infinite life (g) If the fatigue factor of safety is less than 1, then estimate the life of the part in number of rotations, based on the ultimate strength of the material at T = 450 °C.
An air duct heater consists of an aligned array of electrical heating elements in which the longitudinal and transverse pitches are SL = ST = 24 mm. There are 3 rows of elements in the flow direction (NL = 3) and 4 elements per row (NT = 4). Atmospheric air with an upstream velocity of 12 m/s and a temperature of 25°C moves in cross flow over the elements, which have a diameter of 12 mm, a length of 250 mm, and are maintained at a surface temperature of 350°C. (a) Determine the total rate of heat transfer to the air and the temperature of the air leaving the duct heater. (b) Determine the pressure drop across the element bank and the fan power requirement. (c) Compare the average convection coefficient obtained in your analysis with the value for an isolated (single) element. Explain the difference between the results. (d) What effect would increasing the longitudinal and transverse pitches to 30 mm have on the exit temperature of the air, the total heat rate, and the…

Chapter 2 Solutions

Fluid Mechanics, 8 Ed

Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - The system in Fig. P2.18 is at 20°C. If...Ch. 2 - Prob. 2.19PCh. 2 - The hydraulic jack in Fig. P2.20 is filled with...Ch. 2 - At 20°C gage A reads 350 kPa absolute. What is the...Ch. 2 - The fuel gage for a gasoline tank in a car reads...Ch. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - P2.27 Conduct an experiment to illustrate...Ch. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - In Fig. P2.31 all fluids arc at 20°C. Determine...Ch. 2 - For the inverted manometer of Fig. P2.32, all...Ch. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Water flows upward in a pipe slanted at 30°, as in...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - If the pressure in container A in Fig. P2.38 is...Ch. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - P2.41 The system in Fig. P2.41 is at 20°C....Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - In Fig. P2.46 both ends of the manometer are open...Ch. 2 - Prob. 2.47PCh. 2 - The system in Fig. P2.4H is open to 1 atm on the...Ch. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into...Ch. 2 - Example 2.5 calculated the force on plate AB and...Ch. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Gate AB in Fig. P2.55 is 5 ft wide into the paper,...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Gate AB has length L and width b into the paper,...Ch. 2 - Prob. 2.60PCh. 2 - Gale AB in Fig. P2.61 is homogeneous mass of 180...Ch. 2 - Gale AB in Fig. P2.62 is 15 ft long and 8 ft wide...Ch. 2 - The tank in Fig. P2.63 has a 4-cm-diameter plug at...Ch. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - P2.68 Isosceles triangle gate AB in Fig. P2.68 is...Ch. 2 - P2.69 Consider the slanted plate AB of length L in...Ch. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - P2.73 Gate AB is 5 ft wide into the paper and...Ch. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - P2.77 The circular gate ABC in Fig. P2.77 has l-m...Ch. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - P2.85 Compute the horizontal and vertical...Ch. 2 - Prob. 2.86PCh. 2 - The bottle of champagne (SG = 0.96) in Fig. P2.87...Ch. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - The lank in Fig. P2.90 is 120 cm long into the...Ch. 2 - The hemispherical dome in Fig. P2.91 weighs 30 kN...Ch. 2 - A 4-m-diameter water lank consists of two half...Ch. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - The mega-magnum cylinder in Fig. P2.99 has a...Ch. 2 - Pressurized water fills the tank in Fig, P2.100....Ch. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - P2.105 it is said that Archimedes discovered the...Ch. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - P2.108 A 7-cm-diameter solid aluminum ball (SG =...Ch. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - P2.111 A solid wooden cone (SG = 0.729) floats in...Ch. 2 - The uniform 5-m-long round wooden rod in Fig....Ch. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - P2.115 The 2-in by 2-in by 12-ft spar buoy from...Ch. 2 - Prob. 2.116PCh. 2 - The solid sphere in Fig. P2.117 is iron ( SG7.9 )....Ch. 2 - Prob. 2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. 2.127PCh. 2 - Prob. 2.128PCh. 2 - Prob. 2.129PCh. 2 - Prob. 2.130PCh. 2 - Prob. 2.131PCh. 2 - Prob. 2.132PCh. 2 - Prob. 2.133PCh. 2 - Prob. 2.134PCh. 2 - P2.135 Consider a homogeneous right circular...Ch. 2 - Prob. 2.136PCh. 2 - Prob. 2.137PCh. 2 - Prob. 2.138PCh. 2 - P2.139 The tank of liquid in Kg. P2.139...Ch. 2 - P2.140 The U-tube in Fig, P2.140 is moving to the...Ch. 2 - The same tank from Prob. P2.139 is now moving with...Ch. 2 - Prob. 2.142PCh. 2 - Prob. 2.143PCh. 2 - Prob. 2.144PCh. 2 - A fish tank 14 in deep by 16 by 27 in is to be...Ch. 2 - Prob. 2.146PCh. 2 - Prob. 2.147PCh. 2 - Prob. 2.148PCh. 2 - Prob. 2.149PCh. 2 - Prob. 2.150PCh. 2 - Prob. 2.151PCh. 2 - P2.152 A 16-cm-diamctcr open cylinder 27 cm high...Ch. 2 - Prob. 2.153PCh. 2 - Prob. 2.154PCh. 2 - Prob. 2.155PCh. 2 - Prob. 2.156PCh. 2 - Prob. 2.157PCh. 2 - Prob. 2.158PCh. 2 - Prob. 2.159PCh. 2 - Prob. 2.160PCh. 2 - Prob. 2.161PCh. 2 - Prob. 2.1WPCh. 2 - Prob. 2.2WPCh. 2 - W2.3 Consider a submerged curved surface that...Ch. 2 - Prob. 2.4WPCh. 2 - Prob. 2.5WPCh. 2 - W2.6 Consider a balloon of mass m floating...Ch. 2 - Prob. 2.7WPCh. 2 - W2.8 Repeat your analysis of Prob. W2.7 to let the...Ch. 2 - Prob. 2.9WPCh. 2 - Prob. 2.1FEEPCh. 2 - FE2.2 On a sea-level standard day, a pressure...Ch. 2 - Prob. 2.3FEEPCh. 2 - In Fig, FE2,3, if the oil in region B has SG = 0,8...Ch. 2 - Prob. 2.5FEEPCh. 2 - Prob. 2.6FEEPCh. 2 - Prob. 2.7FEEPCh. 2 - Prob. 2.8FEEPCh. 2 - Prob. 2.9FEEPCh. 2 - Prob. 2.10FEEPCh. 2 - Prob. 2.1CPCh. 2 - Prob. 2.2CPCh. 2 - Prob. 2.3CPCh. 2 - Prob. 2.4CPCh. 2 - Prob. 2.5CPCh. 2 - Prob. 2.6CPCh. 2 - Prob. 2.7CPCh. 2 - Prob. 2.8CPCh. 2 - Prob. 2.9CPCh. 2 - Prob. 2.1DPCh. 2 - Prob. 2.2DPCh. 2 - The Leary Engineering Company (see Popular...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License