Concept explainers
The height of mercury column in water tube.
The height of oil column.

Explanation of Solution
Calculation:
Write the expression for density of the oil.
Here, the density of oil is
Write the expression for pressure at bottom in mercury column.
Here, the pressure at bottom in mercury column is
Write the expression for pressure at the bottom of the water column.
Here, the pressure at bottom in water column is
Write the expression for pressure at bottom in oil column.
Here, the pressure at bottom in oil column is
Substitute
The pressure in the liquid varies according to the depth of fluid. But, the hydrostatic pressure of the fluid is same at same depth.
The pressure at bottom in mercury column is equal to pressure at bottom in water column.
The pressure at bottom in mercury column is equal to pressure at bottom in oil column.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Further simplify.
Thus, the height
Substitute
Further simplify.
Thus, the height
Want to see more full solutions like this?
Chapter 2 Solutions
Fluid Mechanics, 8 Ed
- What is the elongation of the rod in inches? And what is the change in diameter? I dont want either answer rounded please! Thank you.arrow_forwardDraw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value of (a) the shear, (b) the bending moment. 300 lb 240 lb 360 lb C D E A 4 in. 3 in. 4 in. 5 in. Fig. P12.5arrow_forwardA commercial office building is located in the city of Lansing, Michigan, and is heatedusing a gaseous fuel with a heating value of 725 Btu/std ft3. The indoor designtemperature is 71ºF. The heat load for the building is known to be 250,000 Btu/hr. Thisheat load accounts for the fact that there are internal heat gains in the building, due tothe presence of people and electronic equipment (e.g., lights and radios). People in thebuilding are usually seated and involved in light activity.a) The furnace had an initial efficiency factor of 73% when installed, but since thenefficiency-improvement retrofits were implemented that raised the efficiency factorto its present value of 82%. The building was designed using the 99% designheating temperature value for the city to determine the outdoor design temperature.Evaluate the annual fuel quantity (in std ft3) required to heat the building, using thedegree-day or bin method.b) Seventy people use the building, but the occupancy pattern for the…arrow_forward
- The volumetric flow rate of air through a duct transition of the type shown in Table 12-9b (rectangular with two parallel sides) is 2 m3/s. The duct before the transition issquare, with a height of 50 cm. The expansion ratio across the transition is 4 (i.e., theduct area after the transition is 4 times greater than the duct area before the transition).a) Determine the pressure loss (in Pa) across the transition if the exit from the duct isabrupt (i.e., the diverging angle of the transition is 180º).b) Determine the percentage reduction in pressure loss for a transition diverging angleof 20º compared to the one in part (a).c) The head HVAC engineer requires the pressure loss across the transition to bereduced to less than 50% of the pressure loss for an abrupt exit (i.e., the case in part(a)), and suggests a transition diverging angle of 45º. Will this new diverging angleachieve the required reduction in pressure loss? Justify your answer.d) For a transition diverging angle of 90º, the…arrow_forwardThe volumetric flow rate of air through a duct transition of the type shown in Table 12-9b (rectangular with two parallel sides) is 2 m3/s. The duct before the transition issquare, with a height of 50 cm. The expansion ratio across the transition is 4 (i.e., theduct area after the transition is 4 times greater than the duct area before the transition).a) Determine the pressure loss (in Pa) across the transition if the exit from the duct isabrupt (i.e., the diverging angle of the transition is 180º).b) Determine the percentage reduction in pressure loss for a transition diverging angleof 20º compared to the one in part (a).c) The head HVAC engineer requires the pressure loss across the transition to bereduced to less than 50% of the pressure loss for an abrupt exit (i.e., the case in part(a)), and suggests a transition diverging angle of 45º. Will this new diverging angleachieve the required reduction in pressure loss? Justify your answer.d) For a transition diverging angle of 90º, the…arrow_forwardAuto Controls The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi. Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is related Show full solution, no copied solutionsarrow_forward
- hand-written solutions only. correct answers upvotedarrow_forwardFor a small house located in Ottawa, Ontario, there are three windows and three doors.You are assigned the task of determining the infiltration and related heat loss rates.It has been found experimentally that the pressure difference due to pressurization is -0.002 in. water. The pressure difference due to stack effect for this building is assumednegligible due to it having only a single floor. The dominant mean wind speed fordesign is assumed to be 15 mph. The house orientation is such that it is normal to thedominant mean wind direction.The house was built recently and all of the windows and doors are tight fitting. Thehouse construction and materials are typical for Ottawa, Ontario. The doors are 3 ftwide and 6.75 ft high. Each of the windows is double hung and each window has thefollowing overall dimensions: 3 ft wide and 4 ft high. (For clarity it is noted that eachdouble hung window has two glass segments that are 3 ft wide and 2 ft high.)The indoor design temperature is 70ºF and…arrow_forwardH.W1: Due to the applied loading, the element at point A on the solid cylinder is subjected to the state of stress shown. Determine the principal 6 ksi stresses acting at this point. 12 ksiarrow_forward
- A wall is 7 m wide and 3 m high, and contains two doors and one window. Details onthe wall components are as follows:• The window is a triple-glazed glass window with a 6.4 mm space filled withargon gas. The window surfaces do not have any special surface emissivitycoatings. The window dimensions are 2 m by 1 m, and the window has analuminum sash with a thermal break.• The wall material has an overall heat-transfer coefficient of 0.5 W/(m2-ºC).• Each door is a solid core flush door made of wood, with a thickness of 4.5 cm.Also, each door is 2.1 m high and 0.8 m wide. Both doors are accompanied bymetal storm doors.a) Determine the overall heat-transfer coefficient [in W/(m2-ºC)] for the wallcombination (based on the overall dimensions of the wall-window-doorscombination), assuming winter conditions.b) The room is maintained at a temperature of 22ºC. If the heat flow rate through thewall is 0.4 kW at a certain time, what is the outdoor temperature at that time?Infiltration can be…arrow_forwardhand-written solutions only. correct answers upvotearrow_forwardCan you use MATLAB?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





