
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 1RQ
To determine
The eras in the history of mankind linked to materials.
Expert Solution & Answer

Explanation of Solution
Mankind has evolved in a manner that the use of materials and tools during the evolution process is quite inextricable. The importance of the use of materials can be understood from the fact that the ages are recognized by the materials used. The eras are not characterized by the language the humans used, the economic achievement humans boasted or the social interactions, but the eras are characterized by the use of materials by humans in that particular developmental phase. The eras of evolution named after materials are as follows
- Stone age: The earliest humans were hunter-gathers, and for hunting they required tools. The earliest humans saw the stones and turned the stones into the tools serving their purpose. The tools made of stones not only helped prehistoric humans in hunting but also in safety, in utensils etc. It is estimated that the stone age started 2.5 million years ago and ended at around 3300BC. It is to be noted that humans started using bones and pottery in this stone era.
- Bronze age: The humans started exploring the earth and found ores of metals such as copper and tin. This led to the hardest metal known to humans at that time was bronze. The invention of bronze became the advent of the new era of Bronze. It is considered to be around 3200-600 BC. The bronze age is very significant for mankind because it was the first industrial process humans came across.
- Iron age: The iron age is the shortest era in the sequence of prehistoric ages. The iron age saw the ferrous metallurgy employment, the evolution of steels in making tools, weapons, utensils, etc. The iron age ushered in the eras of new material development. Thus, mainly three eras of materials are linked to the evolution of humans but the eras of glass, steel, polymer (plastic) also changed the face of the world.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…
please solve this problems follow what the question are asking to do please show me step by step
please first write the line action find the forces and them solve the problem step by step
Chapter 2 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 2 - Prob. 1RQCh. 2 - Provide two definitions of the termÂ...Ch. 2 - Knowledge of what four aspects and their...Ch. 2 - Give an example of how we might take advantage of...Ch. 2 - What are some of the possible property...Ch. 2 - What are some properties commonly associated with...Ch. 2 - What are some of the more common nonmetallic...Ch. 2 - What are some of the important physical properties...Ch. 2 - Why should caution be exercised when applying the...Ch. 2 - What are the standard units used to report stress...
Ch. 2 - What are static properties?Ch. 2 - What is the most common static test to determine...Ch. 2 - What is engineering stress? Engineering strain?...Ch. 2 - What is Youngs modulus or stiffness, and why might...Ch. 2 - What are some of the tensile test properties that...Ch. 2 - Why is it important to specify the offset when...Ch. 2 - How is the offset yield strength determined?Ch. 2 - During the plastic deformation portion of a...Ch. 2 - What are the test conditions associated with...Ch. 2 - How would the tensile test curves differ for a...Ch. 2 - What are two tensile test properties that can be...Ch. 2 - What is uniform elongation, and when might it be...Ch. 2 - Is a brittle material a weak material? What does...Ch. 2 - What is the toughness of a material, and how might...Ch. 2 - What is the difference between true stress and...Ch. 2 - Explain how the plastic portion of a true...Ch. 2 - What is strain hardening or work hardening? How...Ch. 2 - Give examples of applications utilizing high...Ch. 2 - How might tensile test data be misleading for a...Ch. 2 - What type of tests can be used to determine the...Ch. 2 - What are some of the different material...Ch. 2 - What units could be applied to the Brinell...Ch. 2 - Although the Brinell hardness test is simple and...Ch. 2 - What are the similarities and differences between...Ch. 2 - Why are there different Rockwell hardness scales?Ch. 2 - How might hardness tests be used for quality...Ch. 2 - What are the attractive features of the Vickers...Ch. 2 - When might a microhardness test be preferred over...Ch. 2 - What is the attractive feature of the Knoop...Ch. 2 - Why might the various types of hardness tests fail...Ch. 2 - What is the relationship between penetration...Ch. 2 - Describe several types of dynamic loading.Ch. 2 - Why should the results of standardized dynamic...Ch. 2 - What are the two most common types of bending...Ch. 2 - What aspects or features can significantly alter...Ch. 2 - What is notch�sensitivity, and how might it be...Ch. 2 - Which type of dynamic condition accounts for...Ch. 2 - Are the stresses applied during a fatigue test...Ch. 2 - Is a fatigue S–N curve determined from a...Ch. 2 - What is the endurance limit? What occurs when...Ch. 2 - What features may significantly alter the fatigue...Ch. 2 - What relationship can be used to estimate the...Ch. 2 - Describe the growth of a fatigue crack.Ch. 2 - What material, design, or manufacturing features...Ch. 2 - How might the relative sizes of the fatigue region...Ch. 2 - What are fatigue striations, and why do they form?Ch. 2 - Why is it important for a designer or engineer to...Ch. 2 - What mechanical property changes are typically...Ch. 2 - Prob. 59RQCh. 2 - Prob. 60RQCh. 2 - How might the orientation of a piece of metal...Ch. 2 - How might we evaluate the long�term effect of...Ch. 2 - Prob. 63RQCh. 2 - What is a stress–rupture diagram, and how is one...Ch. 2 - Why are terms such as machinability, formability,...Ch. 2 - Prob. 66RQCh. 2 - What are some of the types of flaws or defects...Ch. 2 - What three principal quantities does fracture...Ch. 2 - What is a dormant flaw? A dynamic flaw? How do...Ch. 2 - How is fracture mechanics applied to fatigue...Ch. 2 - What are the three most common thermal properties...Ch. 2 - Describe an engineering application where the...Ch. 2 - Why is it important that property testing be...Ch. 2 - Why is it important to consider the orientation of...Ch. 2 - Select a product or component for which physical...Ch. 2 - Repeat Problem 1 for a product or component...Ch. 2 - Repeat Problem 1 for a product or component...Ch. 2 - A fuel tanker or railroad tanker car has been...Ch. 2 - One of the important considerations when selecting...Ch. 2 - Several of the property tests described in this...Ch. 2 - Steel and aluminum cans that have been submitted...Ch. 2 - Prob. 2CSCh. 2 - Prob. 3CSCh. 2 - Prob. 4CSCh. 2 - Prob. 5CSCh. 2 - Prob. 6CSCh. 2 - Mixed plastic consisting of recyclable...Ch. 2 - What do you suspect is the cause of these...Ch. 2 - Prob. bCSCh. 2 - Prob. cCS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- please solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forwardplease help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forward
- please solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forwardplese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forward
- please solve this problem step by step like human and give correct answer step by steparrow_forwardPROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forward
- Distilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forwardLiquid pentane is flowing in the shell of a shell and tube heat exchanger at a rate of 350,000lbm/hr and an average temperature of 20°F. The shell has a diameter of 27 in and a length of 16ft. The tubes in the heat exchanger are ¾-in 15 BWG tubes on a 1-in triangular pitch. The purposeof this problem is to investigate how the number of baffles impacts the heat transfer and thepressure drop on the shell side of the heat exchanger. Calculate the shell-side convective heattransfer coefficient and pressure drop for the case where the heat exchanger has 10 baffles. Repeatthe calculation for 20 baffles. Then determine thea. Ratio of the shell-side convective heat transfer coefficient for the 20-baffle heat exchangerto the 10-baffle heat exchangerb. Ratio of the shell-side pressure drop for the 20-baffle heat exchanger to the 10-baffle heatexchangerc. If the optimum baffle spacing is somewhere between 0.4Ds and 0.6Ds, how many baffleswould you recommend for this heat exchanger? What are the…arrow_forwardThe evaporator of a vapor compression refrigeration cycle utilizing R-123 as the refrigerant isbeing used to chill water. The evaporator is a shell and tube heat exchanger with the water flowingthrough the tubes. The water enters the heat exchanger at a temperature of 54°F. The approachtemperature difference of the evaporator is 3°R. The evaporating pressure of the refrigeration cycleis 4.8 psia and the condensing pressure is 75 psia. The refrigerant is flowing through the cycle witha flow rate of 18,000 lbm/hr. The R-123 leaves the evaporator as a saturated vapor and leaves thecondenser as a saturated liquid. Determine the following:a. The outlet temperature of the chilled waterb. The volumetric flow rate of the chilled water (gpm)c. The UA product of the evaporator (Btu/h-°F)d. The heat transfer rate between the refrigerant and the water (tons)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY