Concept explainers
Determine the number of atoms in 1.85 mL of mercury (The density of mercury is 13.5 g/mL.)
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Principles of Chemistry: A Molecular Approach (3rd Edition)
- The element silver (Ag) has two naturally occurring isotopes: 109 Ag and 107Ag with a mass of 106.905 u. Silver consists of 51.82% 107Ag and has an average atomic mass of 107.868 u. Calculate the mass of 109Ag.arrow_forwardCopper atoms. (a) What is the average mass of one copper atom? (b) Students in a college computer science class once sued the college because they were asked to calculate the cost of one atom and could not do it. But you are in a chemistry course, and you can do this. (See E. Felsenthal, Wall Street Journal, May 9, 1995.) If the cost of 2.0-mm diameter copper wire (99.9995% pure] is currently 41.70 for 7.0 g, what is the cost of one copper atom?arrow_forwardA fundamental idea of Daltons atomic theory is that atoms of an element can be neither created nor destroyed. We now know that this is not always true. Specifically, it is not true for uranium and lead atoms as they appear in nature. Are the numbers of these atoms increasing or decreasing? Explain.arrow_forward
- In 1886 Eugene Goldstein observed positively charged particles moving in the opposite direction to electrons in a cathode ray tube (illustrated below). From their mass, he concluded that these particles were formed from residual gas in the tube. For example, if the cathode ray tube contained helium, the canal rays consisted of He+ ions. Describe a process that could lead to these ions. Canal rays. In 1886, Eugene Goldstein detected a stream of particles traveling in the direction opposite to that of the negatively charged cathode rays (electrons). He called this stream of positive particles "canal rays:"arrow_forwardConsider an atom of 64Zn. (a) Calculate the density of the nucleus in grams per cubic centimeter, knowing that the nuclear radius is 4.8 106 nm and the mass of the 64Zn atom is 1.06 1022 g. (Recall that the volume of a sphere is [4/3] 3.) (b) Calculate the density of the space occupied by the electrons in the zinc atom, given that the atomic radius is 0.125 nm and the electron mass is 9.11 1028 g. (c) Having calculated these densities, what statement can you make about the relative densities of the parts of the atom?arrow_forwardConstant Composition of Compounds Two samples of sugar are decomposed into their constituent elements. One sample of sugar produces 18.0 g carbon, 3.0 g hydrogen, and 24.0 g oxygen; the other sample produces 24.0 g carbon, 4.0 g hydrogen, and 32.0 g oxygen. Find the ratio of carbon to hydrogen and the ratio of oxygen to hydrogen for each of the samples, and show they are consistent with the law of constant composition.arrow_forward
- Average Atomic Weight Part 1: Consider the four identical spheres below, each with a mass of 2.00 g. Calculate the average mass of a sphere in this sample. Part 2: Now consider a sample that consists of four spheres, each with a different mass: blue mass is 2.00 g, red mass is 1.75 g, green mass is 3.00 g, and yellow mass is 1.25 g. a Calculate the average mass of a sphere in this sample. b How does the average mass for a sphere in this sample compare with the average mass of the sample that consisted just of the blue spheres? How can such different samples have their averages turn out the way they did? Part 3: Consider two jars. One jar contains 100 blue spheres, and the other jar contains 25 each of red, blue, green, and yellow colors mixed together. a If you were to remove 50 blue spheres from the jar containing just the blue spheres, what would be the total mass of spheres left in the jar? (Note that the masses of the spheres are given in Part 2.) b If you were to remove 50 spheres from the jar containing the mixture (assume you get a representative distribution of colors), what would be the total mass of spheres left in the jar? c In the case of the mixture of spheres, does the average mass of the spheres necessarily represent the mass of an individual sphere in the sample? d If you had 80.0 grams of spheres from the blue sample, how many spheres would you have? e If you had 60.0 grams of spheres from the mixed-color sample, how many spheres would you have? What assumption did you make about your sample when performing this calculation? Part 4: Consider a sample that consists of three green spheres and one blue sphere. The green mass is 3.00 g, and the blue mass is 1.00 g. a Calculate the fractional abundance of each sphere in the sample. b Use the fractional abundance to calculate the average mass of the spheres in this sample. c How are the ideas developed in this Concept Exploration related to the atomic weights of the elements?arrow_forwardChlorine has two prominent isotopes,37Cl and35Cl . Which is more abundant? How do you know?arrow_forwardThe early alchemists used to do an experiment in which water was boiled for several days in a sealed glass container. Eventually. some solid residue would appear in die bottom of the flask, which was interpreted to mean that some of the water in the flask had been converted into earth. When Lavoisier repeated this experiment, he found that the water weighed the same before and after heating, and the mass of die flask plus the solid residue equaled the original mass of the flask. Were the alchemists correct? Explain what really happened. (This experiment is described in the article by A. F. Scott in Scientific American, January 1984.)arrow_forward
- Who discovered the nucleus? Describe the experiment that led to this discovery.arrow_forwardWhich elements conduct electricity? a. metals b. nonmetals c. metalloids d. ionsarrow_forwardProvide a reasonable estimate for the number of atoms in a 150-lb adult human. Use the information given in Table 20.2.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning