FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 100P
A capillary tube of 1.2 mm diameter is immersed vertically in water exposed to the atmosphere. Determine how high water will rise in the tube. Take the contact angle at the inner wall of the tube to be 6° and the surface tension to be 1.00 N/m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A capillary tube of 1.55 mm diameter is immersed vertically in water exposed to the atmosphere. Determine how high water will rise in
the tube. Take the contact angle at the inner wall of the tube to be 6° and the surface tension to be 1.00 N/m. Take the density os water
to be 1000 kg/m³.
The water will rise
m in the tube.
Determine the capillary rise of water in the tube of diameter 0.64 mm when immersed in a tank. Take surface tension between the water and tube as 0.073 N/m.
0.0465 m
46.5087 m
0.0047 m
0.4562 m
A 1.6-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5 mm in the tube, making a contact angle of 15°. Determine the surface tension of the liquid.
Chapter 2 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 2 - What is the difference between intensive and...Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A 75-L container is filled with 1 kg of air at a...Ch. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...
Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - A cylindrical tank of methanol has a mass of 60kg...Ch. 2 - The combustion in a gasoline engine may be...Ch. 2 - Consider Table 2-1 in the textbook, which lists...Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - Prob. 27CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 33CPCh. 2 - Prob. 34EPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Prob. 37CPCh. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Use the coefficient of volume expansion to...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - Prob. 42PCh. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 47EPCh. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52CPCh. 2 - Prob. 53CPCh. 2 - In which medium will sound travel fastest for a...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - Prob. 59PCh. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 61PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 63PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Prob. 69CPCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 72CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 88PCh. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 92CPCh. 2 - Prob. 93CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 97PCh. 2 - Consider a 0.15-mm diameter air bubble a liquid....Ch. 2 - Prob. 99PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 101EPCh. 2 - Prob. 102PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 106PCh. 2 - Prob. 107EPCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The analysis of a propeller that operates in water...Ch. 2 - A closed tank is partially filled with water at...Ch. 2 - Prob. 112PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - A newly produced pipe with diameter of 3m and...Ch. 2 - Prove that the coefficient of volume expansion for...Ch. 2 - Although liquids, in general, are hard to...Ch. 2 - Air expands isentropically from 200psia and 240F...Ch. 2 - Prob. 120PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - Derive a relation for the capillary rise eta...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - A large plate is pulled at a constant spend of...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - A fluid between two very long parallel plates is...Ch. 2 - The rotating parts of a hydroelectric power plant...Ch. 2 - The viscosity of some fluids changes when a strong...Ch. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - Oil of viscosity =0.0357Pas and density...Ch. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Prob. 135PCh. 2 - Prob. 136PCh. 2 - Prob. 137PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - The pressure of water is increased from 100kPa to...Ch. 2 - An ideal gas is compressed isothermally from...Ch. 2 - The variation of the density of a fluid with...Ch. 2 - Prob. 143PCh. 2 - The viscosity of liquids and the viscosity of...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - A 0.6-mm-diameter glass tube is inserted into...Ch. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 155PCh. 2 - Prob. 156PCh. 2 - Prob. 157PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One side of the container has a 03-m square door that is hinged at its top edge. If the container is filled with water, determine the smallest force F that must be applied to the bottom edge of the door to keep it closed.arrow_forward2. Mercury is poured into the tube in the figure until the mercury occupies 375 mm of the tube's length. An equal volume of water is then poured into the left leg. Locate the water and mercury surfaces. Also determine the maximum pressure in the tube. Uniform diameter tube 2 -160 mm-arrow_forwardA glass tube 1.6m long and having a diameter of 2.5cm is inserted vertically into a tank of oil (s.g. = 0.80) with the open end down and the closed end uppermost. If the open end is submerged 1.30m from the oil surface, determine the height to which the oil will rise in the tube. Assume barometric pressure is 100 KPa and neglect vapor pressure.arrow_forward
- Determine the capillary rise of the water in the glass tube of diameter 0.68cm, which is immersed vertically in the glass vessel.The surface tension of water is 0.07213 N/m.Take the contact angle of water as = 00 The capillary raise of water in the tube is (unit in m)=arrow_forwardSome rocks or bricks contain small air pockets in them and have a spongy structure. Assuming the air spaces form columns of an average diameter of 5 µm, determine how high water can rise in such a material. Take the surface tension of the air-water interface in that material to be 0.085 N/m. The capillary rise in such a material is m.arrow_forwardA 0.018-in-diameter glass tube is inserted into mercury, which makes a contact angle of 140° with glass. Determine the capillary drop of mercury in the tube at 68°F.arrow_forward
- The diameter of one arm of a U-tube is 12 mm while the other arm is large. If the U-tube contains some water and both surfaces are exposed to atmospheric pressure, determine the difference between the water levels in the two arms. The surface tension and density of water at 20°C are σs = 0.073 N/m and ρ = 1000 kg/m3. What is the difference between the water levels in the two arms (in mm.)arrow_forwardA capillary tube is immersed vertically in a water container. Knowing that water starts to evaporate when the pressure drops below 3 kPa, determine the maximum capillary rise and tube diameter for this maximum-rise case. Take the contact angle at the inner wall of the tube to be 6° and the surface tension to be 1.00 N/m. The maximum capillary rise is m. The tube diameter for the maximum rise is um.arrow_forwardA capillary tube is immersed vertically in a water container. Knowing that water starts to evaporate when the pressure drops below 3.5 kPa, determine the maximum capillary rise and tube diameter for this maximum-rise case. Take the contact angle at the inner wall of the tube to be 6° and the surface tension to be 1.00 N/m. Find the tube diameter for the maximum rise (in μm.)arrow_forward
- Determine the pressure difference between the inside and outside of the 0.12 mm diameter air bublle in a liquid if the surface tension at the air-liquid interface is 0.067 N/m. Express your answer in 3 decimal places and in kPa.arrow_forwardThe water in a tank is pressurized by air, and the pressure is measured by a mulitifluid manometer as shown in the figure below. the tank is located on a mountain at an altitude of 1400m where thw atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h,=0.1 m, h, = 0.2 m, h, = 0.35m. Take the densities of water, oil, and mercury to be 1000 kg/m³, 850 kg/m³ and 13600 kg/m³ respectively. AIR WATER Mercuryarrow_forwardA spherical tank is filled halfway with ethyl alcohol (SG = 0.789). The diameter of the tank is 8 ft. Determine the absolute pressure in psia at the bottom of the tank.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY