Concept explainers
A device constructed to throw various objects can impart up to 500 joules of kinetic energy to the object being thrown. For a given mass, there is a maximum velocity that the device can throw the object. This is represented in the following diagram, and it fits a power law model. Velocities above the line cannot be achieved by the device, velocities below the line can.
Write a MATLAB program that will accept a value of mass [kg] and desired velocity [m/s] from the user and classify them as “Possible” or “Not Possible.” Three points on the line are labeled on the diagram. You must use polyfit to determine the equation of the line, and then use these values to do the classification.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
- I could really use some assistance on part b,c,d,e,farrow_forwardHelp me solve this using MATLABarrow_forwardYou walk along the beach towards a dock while your friend rows a boat towards the same dock on a flat lake. Your friend's boat approaches the dock on a straight course, but also rotates about its center-of-mass since your friend is not pulling evenly on the oars. If you knew your own velocity (vwalker), the magnitude of boat's angular velocity (thetaboat), and radius vector from yourself to your friend in the boat (rfriend) at any given time, you could use the following equation to calculate the your friend's velocity: vfriend = vwalker + (thetaboat)k x rfriend where k is a unit vector in the vertical direction. True Falsearrow_forward
- Solve the branch carrow_forward1. For the following concentration expressions, indicate whether they are uniform or nonuniform and in how many dimensions (OD, 1D, 2D, or 3D), and steady or unsteady. Then for the following control volume and origin, and table of constants, use Excel or Matlab to graph profiles that show how concentration changes within the control volume and over time to a limit of 20 for the following: C(x,0,0,0), C(0,y,0,0), C(0,0,z,0) and C(0,0,0,t). On each graph, show which parameters are held constant, the CV boundaries, and the point where all four plots overlap. 20 C(x=0) 10 a 0.0001 b 0.001 | 20 0.01 k 0.1 100 All of the following functions are C(space, time) and so not necessarily just x as suggested. a. C,(x)= C,(x = 0)x exp{- ax}arrow_forward2. This problem has to do with the motion of a car along a straight road. The mass of the car is m, its drag resistance is Cd, the rolling resistance of the tires is pr. Choose any car that you'd like to analyze and obtain its data (cite your source). Look up typical values of rolling resistance. For the MATLAB portions, explore these questions for different values of mass of the car (which would depend on the number of passengers and luggage in the car) and the rolling resistance (which would depend on the inflation pressure of the tires) (a) Determine the differential equation if the car is traveling along a flat road. (b) Determine the traction force corresponding to speed ve. (c) (MATLAB) Determine the 0-60 mph time and distance. (d) (MATLAB) Determine the velocity and distance as a function of time if the car is to be started from rest and is supplied with the tractive force for 30 mph. (e) (MATLAB) If the car is travelling at a steady speed 30 mph and it's to be sped up to 60…arrow_forward
- For the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution] Position vs time Velocity vs time Acceleration vs time Force vs time [For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner) Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ? a =(50 e^t)/(550 ) [N/kg] v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11 x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 ) a(4s)=(50*54.6)/550= 4.96[m/s^2 ] v(4s)=((e^4-1))/11= 4.87[m/s] x(4s)=((e^4- 4 - 1))/11= 4.51 [m]arrow_forwardMatlab code pleasearrow_forwardFor the following concentration expressions, indicate whether they are uniform or nonuniform and in how many dimensions (OD, 1D, 2D, or 3D), and steady or unsteady. Then for the following control volume and origin, and table of constants, use Excel or Matlab to graph profiles that show how concentration changes within the control volume and over time to a limit of 20 for the following: C(x,0,0,0), C(0,y,0,0), c(0,0,z,0) and C(0,0,0,t). On each graph, show which parameters are held constant, the CV boundaries, and the point where all four plots overlap. 20 C(x=0) 10 a 0.0001 b 0.001 20 0.01 y k 0.1 100 All of the following functions are C(space, time) and so not necessarily just x as suggested. a. C,(x)= C,(x = 0)x exp{- ax} d. C, (x) = C, (x = 0)x exp{-ax}x exp{- by² }x exp{-cz²}x exp{- kt}arrow_forward
- Please do this in MATLABarrow_forwardRead and solve carefully please write clearly and box the final answer (remember to make the block diagram)arrow_forwardQ4: Create a Visual Basic Project to find the value of the following series: h? h4 h3 cos(h) = h – 2! 3! 4! Write the code program so that the value of angle (h) is entered into inputbox. Estimate the value of series (cos(h)) so that the absolute value of any term is greater or equal to 10-6. Display the required number of terms (N) which it used in this series in a text box and display the result of series (cos(h)) in another separate text box.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY