Concept explainers
(a)
The period
(a)
Answer to Problem 19.51P
The period
Explanation of Solution
Given information:
A thin homogeneous wire is bent into the shape of an isosceles triangle of sides are b, b and 1.6b.
Calculation:
Show the position of centroid and distance as in Figure (1).
Write the equation for mass moment of inertia
Here, r is distance of each particle from the axis of rotation.
Calculate the expression for mass moment of inertia
Here,
Modify the above equation,
Calculate the centroid equation
Calculate the distance equation AG as below
Substitute
The external forces in the system are force due mass of the thin wire and the effective restoring couple is
Take moment about A in the system for external forces.
Substitute
Take moment about A in the system for effective forces.
Substitute
Equate the moment about A in the system for external and effective forces.
Compare the differential Equation (1) with the general differential equation of motion
Calculate the period of small oscillation
Substitute
Therefore, the period
(b)
The period
(b)
Answer to Problem 19.51P
The period
Explanation of Solution
Given information:
A thin homogeneous wire is bent into the shape of an isosceles triangle of sides are b, b and 1.6b.
Calculation:
Calculate the expression for mass moment of inertia
Substitute
Calculate the equation for distance GB by using the Pythagoras theorem:
Substitute
The external forces in the system are force due mass of the thin wire and the effective restoring couple is
Take moment about B in the system for external forces.
Substitute
Take moment about B in the system for effective forces.
Substitute
Equate the moment about B in the system for external and effective forces.
Compare the differential Equation (2) with the general differential equation of motion
Calculate the period of small oscillation
Substitute
Therefore, the period
Want to see more full solutions like this?
Chapter 19 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- A homogeneous wire of length 2l is bent as shown and allowed to oscillate about a frictionless pin at B. Denoting by τ0 the period of small oscillations when β = 0, determine the angle β for which the period of small oscillations is 2rO.arrow_forwardA period of 6.00 s is observed for the angular oscillations of a 4-oz gyroscope rotor suspended from a wire as shown. Knowing that a period of 3.80 s is obtained when a 1.25-in.-diameter steel sphere is suspended in the same fashion, determine the centroidal radius of gyration of the rotor. (Specific weight of steel = 490 lb/ft3.)arrow_forwardA connecting rod is supported by a knife edge at point A; the period of its small oscillations is observed to be 1.03 s. Knowing that the distance ra is 6 in., determine the centroidal radius of gyration of the connecting rod.arrow_forward
- Α Ο CH B d PROBLEM 19.50 A small collar of mass 1 kg is rigidly attached to a 3-kg uniform rod of length L = 750 mm. Determine (a) the distance d to maximize the frequency of oscillation when the rod is given a small initial displacement, (b) the corresponding period of oscillation.arrow_forwardA small collar of mass 1 kg is rigidly attached to a 3-kg uniform rod of length L = 750 mm. Determine (a) the distance d to maximize the frequency of oscillation when the rod is given a small initial displacement, (b) the corresponding period of oscillation.arrow_forwardA 6-lb slender rod is suspended from a steel wire that is known to have a torsional spring constant K=1.5 ft.lb/rad. If the rod is rotated through 180° about the vertical and released, determine (a ) the period of oscillation, (b ) the maximum velocity of end A of the rod.arrow_forward
- The inner rim of an 85-lb flywheel is placed on a knife edge, and the period of its small oscillations is found to be 1.26 s. Determine the centroidal moment of inertia of the flywheel.arrow_forwardAn inverted pendulum consisting of a rigid bar ABC of length l and mass m is supported by a pin and bracket at C. A spring of constant k is attached to the bar at B and is undeformed when the bar is in the vertical position shown. Determine (a ) the frequency of small oscillations, (b ) the smallest value of a for which these oscillations will occur.arrow_forwardTwo 40-g weights are attached at A and B to the rim of a 1.5-kg uniform disk of radius r = 100 mm. Determine the frequency of small oscillations when β = 60°.arrow_forward
- A uniform rod AB can rotate in a vertical plane about a horizontal axis at C located at a distance c above the mass center G of the rod. For small oscillations determine the value of c for which the frequency of the motion will be maximum.arrow_forwardA uniform disk of radius r and mass m can roll without slipping on a cylindrical surface and is attached to bar ABC of length L and negligible mass. The bar is attached to a spring of constant k and can rotate freely in the vertical plane about point B. Knowing that end A is given a small displacement and released, determine the frequency of the resulting oscillations in terms of m,L,K,and g.arrow_forwardProblem 38.3 Two uniform rods, each of weight W = 24 lb and length L = 2 ft, are welded together to form the assembly shown. Knowing that the constant of each spring is k = 3 lb/in. and that end A is given a small displacement and released, determine the frequency of the resulting motion. B wwarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY