Concept explainers
(a)
The time
(a)
Answer to Problem 19.16P
The time
Explanation of Solution
Given Information:
The cord length
At rest the angle
The distance (d) is 0.6 m.
Assuming the value of acceleration due to gravity (g) is
Calculation:
Calculate natural circular frequency for path
Substitute
The time period of oscillations corresponding to the natural circular frequency
Calculate the time period
Substitute
Calculate the length
Substitute 0.6 m for d.
Calculate the natural circular frequency
Substitute
The time period of oscillations corresponding to the natural circular frequency
Calculate the time period
Substitute
Calculate the time period to return to A using the relation:
Substitute 1.09876 s for
Therefore, the time
(b)
The amplitude
(b)
Answer to Problem 19.16P
The amplitude
Explanation of Solution
Given Information:
The cord length
At rest the angle
The distance (d) is 0.6 m.
Assume the acceleration due to gravity (g) is
Calculation:
For the path between the points A and B:
Consider point A:
The displacement at A
Consider point B:
Express the derivative of the displacement at B
Substitute
Express the velocity
Substitute Equation (1) for the value of
For the path between the points B and C:
Consider point C:
The displacement at C
Consider point B:
Express the derivative of the displacement at B:
Substitute
Express the velocity at B:
Substitute Equation (3) for the value of
Equate Equations (2) and (4).
Calculate the amplitude
Substitute 1.2 m for
Therefore, the amplitude
Want to see more full solutions like this?
Chapter 19 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
- A piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the final pressure of the refrigerant-134a. The final pressure is kPa.arrow_forwardThe hydraulic cylinder BC exerts on member AB a force P directed along line BC. The force P must have a 560-N component perpendicular to member AB. A M 45° 30° C Determine the force component along line AB. The force component along line AB is N.arrow_forward! Required information A telephone cable is clamped at A to the pole AB. The tension in the left-hand portion of the cable is given to be T₁ = 815 lb. A 15° 25° B T₂ Using trigonometry, determine the required tension T₂ in the right-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical. The required tension is lb.arrow_forward
- What are examples of at least three (3) applications of tolerance fitting analysis.arrow_forwardThe primary material used in the production of glass products is silica sand. True or Falsearrow_forwardWhich one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forward
- Thermoset polymers can be recycled with little to no degradation in properties. True or Falsearrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forwardNo chatgpt pls will upvotearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY