Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19.1, Problem 19.13P
To determine

(a)

The angle θ.

Expert Solution
Check Mark

Answer to Problem 19.13P

θ=1.288°

Explanation of Solution

Given information:

Angle θ=5°

Length of cord l=40in.

The equation of a simple harmonic motion in angular displacement is given as:

θ=θmsin(ωnt+ϕ) _______________ (1)

The initial condition for the system is:

t=0;θ=5°t=0;θ˙=0

Now, taking derivative of equation (1) and substitute 0 for t and 0 for θ˙ in equation (1);

θ=θmsin(ωnt+ϕ)θ˙=θmωncos(ωnt+ϕ)0=θmωncos(0+ϕ)0=cos(ϕ)ϕ=cos1(0)ϕ=π2

Now, For a simple pendulum:

ωn=gl

Change the length (l) into ft.

l=40×112l=3.333ft

Thus, ωn=32.23.333ωn=3.1087rad/s

Again amplitude

θm=5°or,θm=5°×π180θm=0.08727rad

Now, put all the above obtained values in equation (1) with t=1.6s (given);

θ=θmsin(ωnt+ϕ)θ=0.08727sin((3.1087)(1.6)+π2)θ=0.08727×0.257786933

θ=0.002496rador,θ=1.288°

Conclusion:

The value of the angle θ=1.288°.

To determine

(b)

The magnitudes of the velocity and acceleration of the bob.

Expert Solution
Check Mark

Answer to Problem 19.13P

θ=1.288°

Explanation of Solution

Given information:

Angle θ=5°

Length of cord l=40in.

The velocity of the bob is compute by taking derivative of equation (1);

θ=θmsin(ωnt+ϕ)θ˙=θmωncos(ωnt+ϕ)_______(2)

By substituting the values of θm,ωn,tandϕ in the above equation we get the required velocity as,

θ˙=0.08727(3.1087)cos((3.1087)(1.6)+π2)θ˙=0.08727×(3.1087)×(0.9662017891)θ˙=0.26213rad/s

The angular velocity of pendulum is:

v=lθ˙_____________(3)v=3.3333×0.26213v=0.874ft/s

The acceleration of the motion is calculated by taking the derivative of equation (2),

θ˙=θmωncos(ωnt+ϕ)θ¨=θmωn2sin(ωnt+ϕ)

By substituting the values of θm,ωn,tandϕ in the above equation we get;

θ¨=(0.08727)(3.1087)2sin((3.1087)(1.6)+π2)θ¨=(0.08727)×(3.1087)2×(0.257786933)θ¨=0.21733rad/s2

Now, the magnitude of acceleration at both angular and tangential direction is calculated as:

a=(an)2+(at)2 _________(4)

Where, an = acceleration in angular direction and at = acceleration in tangential direction.

Acceleration in angular direction an=v2l

From equation (3);

an=l2θ˙2lan=lθ˙2an=3.333×(0.26207)2an=0.22894ft/s2

And, acceleration in tangential direction

at=lθ¨at=3.3333×(0.21733)at=0.72443ft/s2

Put the values of an and at in equation (4) we get,

a=(an)2+(at)2a=(0.22894)2+(0.72443)2a=0.759ft/s2

Conclusion:

The velocity of the bob is v=0.874ft/s and acceleration of the bob is a=0.759ft/s2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The cylinder is moved to hang from hole A as shown in Case 1 above. The bar is released, and its resulting angular acceleration is recorded. Then the cylinder is moved to hang from hole E, as shown in Case 2 above. Again, the bar is released, and its resulting angular acceleration is recorded. Is the magnitude of the initial angular acceleration of the bar-cylinder system in Case 1 larger than, smaller than, or equal to the magnitude of the initial angular acceleration of the bar-cylinder system in Case 2? In a clear, coherent, paragraph-length response, explain your reasoning.
EXERCISE 2.45 Pin P slides inside the 400- mm-radius groove at a constant rate of 8 m/s. This motion is actuated by arm AB. Determine the rotation rate of this arm and the rate of change of that rate when (a) 0 =90°, (b) 0 = 135°. (Hint: use polar coordinates and path variables to solve the problem. Select A as the origin of the frame. R is from the rotation center of the arm to pin P.) 600 mm) B 400 mm
The pendulum shown is released from rest at A and swings through 90° before the cord touches the fixed peg B . Determine the smallest value of a for which the pendulum bob will describe a circle about the peg.

Chapter 19 Solutions

Vector Mechanics For Engineers

Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - Prob. 19.37PCh. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Two uniform rods, each of weight W=24 lb and...Ch. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - Prob. 19.65PCh. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Two 6-lb uniform semicircular plates are attached...Ch. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY