FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 92P
Air at 0.000°C and 1.00 atm pressure has a density of 129 × 10−3 g/cm3 and the speed of sound is 331 m/s at that temperature. Compute the ratio γ of the molar specific heats of air. (Hint: See Problem 91.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are several ways to calculate the speed of sound c, in a gas, for example
Y.R.T
Cs
M
where y is the adiabatic coefficient of the gas, R is the ideal gas constant, T is the temperature in Kelvin,
and M is the molar mass. Find the speed of sound in air at T = 0°C and at T = 20° C, use y = 1.4,
M = 28.97 g/mol, and 0°C = 273.15 K.
The speed of sound in air at 0°C, c, =
Units Select an answer
The speed of sound in air at 20°C, c2 =
Units Select an answer
A convenient approximate way to find the speed of sound at low temperatures (note that the temperature
must be small in Celsius, not in Kelvin: T(in C) « 273.15) is the following
T
Co/1 +
= Co + a T,
Cs
2)
273.15
where T is the gas temperature in Celsius and co and a are constants. Using the values you found above
(C1 and c2) find the constants co and a for the speed of sound in air.
The constant co =
Units Select an answer
The constant a =
Units Select an answer v
Use the second (approximate) equation to find the speed of sound in…
B1
Air at standard atmosphere is compressed adiabatically to 97,345 Pa. what are the pressure, density, temperature, and speed of sound.
Chapter 19 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 19 - For four situations for an ideal gas, the table...Ch. 19 - In the p-V diagram of Fig. 19-17, the gas does 5 J...Ch. 19 - For a temperature increase of T1, a certain amount...Ch. 19 - The dot in Fig, 19-18a represents the initial...Ch. 19 - A certain amount of energy is to be transferred as...Ch. 19 - The dot in Fig. 19-18b represents the initial...Ch. 19 - a Rank the four paths of Fig. 19-16 according to...Ch. 19 - The dot in Fig. 19-18c represents the initial...Ch. 19 - Prob. 9QCh. 19 - Does the temperature of an ideal gas increase,...
Ch. 19 - Prob. 1PCh. 19 - Gold has a molar mass of 197 g/mol. a How many...Ch. 19 - SSM Oxygen gas having a volume of 1000 cm3 at...Ch. 19 - A quantity of ideal gas at: 10.0C and 100 kPa...Ch. 19 - The best laboratory vacuum has a pressure of about...Ch. 19 - Water bottle in a hot car. In the American...Ch. 19 - Suppose 1.80 mol of an ideal gas is taken from a...Ch. 19 - Compute a the number of moles and b the number of...Ch. 19 - An automobile tire has a volume of 1.64 102 m3...Ch. 19 - A container encloses 2 mol of an ideal gas that...Ch. 19 - SSM ILW WWW Air that initially occupies 0.140 m3...Ch. 19 - GO Submarine rescue. When the U.S. submarine...Ch. 19 - Prob. 13PCh. 19 - In the temperature range 310 K to 330 K, the...Ch. 19 - Suppose 0.825 mol of an ideal gas undergoes an...Ch. 19 - An air bubble of volume 20 cm3 is at the bottom of...Ch. 19 - GO Container A in Fig. 19-22 holds an ideal gas at...Ch. 19 - The temperature and pressure in the Suns...Ch. 19 - a Compute the rms speed of a nitrogen molecule at...Ch. 19 - Calculate the rms speed of helium atoms at 1000 K....Ch. 19 - SSM The lowest possible temperature in outer space...Ch. 19 - Find the rms speed of argon atoms at 313 K. See...Ch. 19 - A beam of hydrogen molecules H2 is directed toward...Ch. 19 - At 273 K and 1.00 102 atm, the density of a gas...Ch. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Water standing in the open at 32.0C evaporates...Ch. 19 - At what frequency would the wavelength of sound in...Ch. 19 - SSM The atmospheric density at an altitude of 2500...Ch. 19 - Prob. 30PCh. 19 - In a certain particle accelerator, protons travel...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - The most probable speed of the molecules in a gas...Ch. 19 - Prob. 37PCh. 19 - Figure 19-24 gives the probability distribution...Ch. 19 - At what temperature does the rms speed of a...Ch. 19 - Two containers are at the same temperature. The...Ch. 19 - Prob. 41PCh. 19 - What is the internal energy of 1.0 mol of an ideal...Ch. 19 - Prob. 43PCh. 19 - GO One mole of ail ideal diatomic gas goes from a...Ch. 19 - ILW The mass of a gas molecule can be computed...Ch. 19 - Under constant pressure, the temperature of 2.00...Ch. 19 - The temperature of 2.00 mol of an ideal monatomic...Ch. 19 - GO When 20.9 J was added as heat to a particular...Ch. 19 - SSM A container holds a mixture of three...Ch. 19 - We give 70 J as heat to a diatomic gas, which then...Ch. 19 - Prob. 51PCh. 19 - GO Suppose 12.0 g of oxygen O2 gas is heated at...Ch. 19 - SSM WWW Suppose 4.00 mol of an ideal diatomic gas...Ch. 19 - We know that for an adiabatic process pV = a...Ch. 19 - A certain gas occupies a volume of 4.3 L at a...Ch. 19 - Suppose 1.00 L of a gas with = 1.30, initially at...Ch. 19 - The volume of an ideal gas is adiabatically...Ch. 19 - GO Opening champagne. In a bottle of champagne,...Ch. 19 - GO Figure 19-26 shows two paths that may be taken...Ch. 19 - Prob. 60PCh. 19 - GO A gas is to be expanded from initial state i to...Ch. 19 - GO An ideal diatomic gas, with rotation but no...Ch. 19 - Figure 19-27 shows a cycle undergone by 1.00 mol...Ch. 19 - Calculate the work done by an external agent...Ch. 19 - An ideal gas undergoes an adiabatic compression...Ch. 19 - Prob. 66PCh. 19 - An ideal monatomic gas initially has a temperature...Ch. 19 - Prob. 68PCh. 19 - SSM The envelope and basket of a hot-air balloon...Ch. 19 - An ideal gas, at initial temperature T1 and...Ch. 19 - Prob. 71PCh. 19 - At what temperature do atoms of helium gas have...Ch. 19 - Prob. 73PCh. 19 - Prob. 74PCh. 19 - The temperature of 3.00 mol of a gas with CV =...Ch. 19 - During a compression at a constant pressure of 250...Ch. 19 - SSM Figure 19-28 shows a hypothetical speed...Ch. 19 - Prob. 78PCh. 19 - SSM An ideal gas undergoes isothermal compression...Ch. 19 - Oxygen O2 gas at 273 K and 1.0 atm is confined to...Ch. 19 - An ideal pas is taken through a complete cycle in...Ch. 19 - Prob. 82PCh. 19 - SSM A sample of ideal gas expands from an initial...Ch. 19 - An ideal gas with 3.00 mol is initially in state 1...Ch. 19 - A steel lank contains 300 g of ammonia gas NH3 at...Ch. 19 - In an industrial process the volume of 25.0 mol of...Ch. 19 - Figure 19-29 shows a cycle consisting of five...Ch. 19 - An ideal gas initially at 300 K is compressed at a...Ch. 19 - A pipe of length L = 25.0 m that is open at one...Ch. 19 - In a motorcycle engine, a piston is forced down...Ch. 19 - For adiabatic processes in an ideal gas, show that...Ch. 19 - Air at 0.000C and 1.00 atm pressure has a density...Ch. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - For air near 0C, by how much does the speed of...Ch. 19 - Prob. 97P
Additional Science Textbook Solutions
Find more solutions based on key concepts
40. Use the Lewis model to determine the formula for the compound that forms from each pair of atoms.
a. Al and...
Introductory Chemistry (6th Edition)
Nitrogen at 300 K. 3 MPa is heated to 500 K Find the change in enthalpy using (a) Table B.2.1. (b) Table A.8, a...
Fundamentals Of Thermodynamics
A womans father has ornithine transcarbamylase deficiency (OTD), an X-linked recessive disorder producing menta...
Genetic Analysis: An Integrated Approach (3rd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 4.0 g of a gas occupies 22.4 Lat NTP. The specific heat capacity of the gas at constant volume is 5.0 JK-¹ mol-¹. If the speed of sound in this gas at NTP is 952 ms ¹, then the heat capacity at constant pressure is (Take gas constant R=8.3 JK ¹ mol ¹) - - 1 1 (a) 8.0 JK¯¹ mol-¹ (b)7.5 JK-¹ mol-¹ 1 1 1 1 (c) 7.0 JK-¹ mol-¹ (d) 8.5 JK-¹ mol-¹ 1arrow_forwardThe speed of sound, cs, in a perfect gas of molar mass M is related to the ratio of heat capacities γ by cs = (γRT/M)1/2. Show that cs = (γp/ρ)1/2, where ρ is the mass density of the gas. Calculate the speed of sound in argon at 25 °C.arrow_forwardyou do hot have a thermometer to measure temp you are able to measures the speed of sound through the air. if you measure the sound to be 349m/s. what is the air temp? V=331.4m/s + (0.606m/s/1°C)T apply this formula and answer with the exact valuearrow_forward
- Find the temperature in Kelvin at which the speed of sound in Helium is 316 m/s. Helium is an ideal monoatomic gas with a molar mass M = 4.003 g/mole and γ = 1.67.arrow_forwardPlease answer it within 30 minutes.I will upvote! For diatomic gases like nitrogen and oxygen that are the dominant constituents of air, γ = 1.2. What is the speed of sound at temperature 30.3°C (m/s)? (Hint: the composition of air can be viewed as 80% nitrogen and 20% oxygen, and you should know their mass.) The sound speed = (γP/ρ)0.5, where P is the gas pressure, ρ is the gas density.arrow_forwardAt what frequency would the wavelength of sound in air beequal to the mean free path of oxygen molecules at 1.0 atm pressureand 0.00C? The molecular diameter is 3.0 * 10-8 cm.arrow_forward
- A sound wave propagates through a region filled with an ideal gas at constant temperature T. It approaches an acoustically permeable but thermally insulating membrane such that the angle between the wave and the plane of the membrane is 30 degrees. On the other side of the membrane is the same gas at a different temperature T'. What is the minimum value of T'/T such that no sound passes across the barrier? (You may find it useful to know that the speed of sound in an ideal gas is proportional to ✓T.) 1. ༥ ིི ཚེ གྲུ་ N O 1/2 O 3/4. 4/3.arrow_forwardAir at 0.000C and 1.00 atm pressure has a density of 1.29 *10-3g/cm3, and the speed of sound is 331 m/s at that temperature.Compute the ratio g of the molar specific heats of air.arrow_forwardThe gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) K/min dT_ dtarrow_forward
- The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) dT=0.512 dt X K/minarrow_forwardEx. 42 At what temperature will oxygen molecules have the same R.M.S. speed as that of helium molecules at N.T.P.? (Give : Molecular weight of oxygen weight of oxygen 4) 32, Molecular %3D %3Darrow_forwardThe molar mass of iodine is 127 g/mol.When sound at frequency 1000 Hz is introduced to a tube of iodine gas at 400 K, an internal acoustic standing wave is set up with nodes separated by 9.57 cm.What is g for the gas?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY