Concept explainers
How Can We Measure Allele Frequencies in Populations?
In a population where the females have the allelic frequencies A = 0.35 and a = 0.65 and the frequencies for males are A = 0.1 and a = 0.9, how many generations will it take to reach Hardy–Weinberg equilibrium for both the allelic and the genotypic frequencies? Assume random mating and show the allelic and genotypic frequencies for each generation.
To determine: The number of generations taken to reach Hardy-Weinberg equilibrium law in the given case.
Introduction: The Hardy-Weinberg law states that in the absence of other evolutionary influences, the frequency of allele and genotypes or genetic variation within a population will remain constant across generations.
Explanation of Solution
In order to find the number of generations required to attain equilibrium, the allelic and genotypic frequencies need to be calculated. The number of generations that posses the same frequency of allele and genotypes are said be in equilibrium with one another.
The allele frequencies on a given population are as follows:
Females, f(A)= 0.35 and f(a)= 0.65
Males, f(A)= 0.1 and f(a)= 0.9
The probabilities of mating of an egg with the sperm are:
A egg with A sperm= (0.35)(0.1)= 0.035
A egg with a sperm= (0.35)(0.9)= 0.315
a egg with A sperm= (0.65)(0.1)= 0.065
a egg with a sperm= (0.65)(0.9)= 0.585
So, in the second generation, the expected genotypes are 0.035, 0.315, 0.065, and 0.065
The allele frequency can be calculated as:
The frequency of a dominant allele (A),
The frequency of a dominant allele (A) is 0.225.
The frequency of a recessive allele (a)
The frequency of a recessive allele (a) is 0.775.
In the third generation, the expected frequencies for a recessive allele (a) is 0.775 and dominant allele (A) is 0.225.
The probabilities of mating of an egg with the sperm are:
A egg with A sperm= (0.225)(0.225)= 0.05
A egg with a sperm= (0.225)(0.775)= 0.174
a egg with A sperm= (0.775)(0.225)= 0.174
a egg with a sperm= (0.775)(0.775)= 0.6
So, in the third generation, the expected genotypes are 0.05, 0.35, and 0.6.
The allele frequency can be calculated as:
The frequency of dominant allele (A)
The frequency of a dominant allele (A) is 0.225.
The frequency of recessive allele (a)
The frequency of a recessive allele (a) is 0.775.
Hence, two generations are required for the populations to reach Hardy-Weinberg law.
To determine: The allelic and genotypic frequencies for each generation.
Introduction: The allele frequency refers to the number of times an allele occurs at a specific locus within a population. It can be represented as a percentage or in fraction. Genotype frequency refers to the number of times a particular genotype occurs within a given population.
Explanation of Solution
The genotypic and allelic frequencies are calculated as follows:
In the second generation,
The allele frequencies for a given population are:
Females, f(A)= 0.35 and f(a)= 0.65
Males, f(A)= 0.1 and f(a)= 0.9
The probabilities of mating of an egg with the sperm are:
A egg meeting with A sperm= (0.35)(0.1)= 0.035
A egg meeting with a sperm= (0.35)(0.9)= 0.315
a egg meeting with A sperm= (0.65)(0.1)= 0.065
a egg meeting with a sperm= (0.65)(0.9)= 0.585
So, in the second generation, the expected genotypes are 0.035, 0.315, 0.065 and 0.065
The frequency of allele can be calculated as:
The frequency of dominant allele (A)
The frequency of a dominant allele (A) is 0.225.
The frequency of recessive allele (a)
The frequency of a recessive allele (a) is 0.775.
In the third generation, the expected frequencies for recessive allele (a) are 0.775 and dominant allele (A) is 0.225.
The probabilities of mating of an egg with the sperm are:
A egg with A sperm= (0.225)(0.225)= 0.05
A egg with a sperm= (0.225)(0.775)= 0.174
a egg with A sperm= (0.775)(0.225)= 0.174
a egg with a sperm= (0.775)(0.775)= 0.6
So, in the third generation, the expected genotypes are 0.05, 0.35, and 0.6.
The allele frequency can be calculated as:
The frequency of dominant allele (A)
The frequency of a dominant allele (A) is 0.225.
The frequency of recessive allele (a)
The frequency of a recessive allele (a) is 0.775.
Want to see more full solutions like this?
Chapter 19 Solutions
Human Heredity: Principles and Issues (MindTap Course List)
- In a population of 200 people, an allele F has a frequency of 84%. What is the frequency of allele f? Using the Hardy-Weinberg equation, estimate the numbers of homozygous dominant, heterozygous, and homozygous recessive genotypes. (Remember that the formula is: p2 + 2pq + q2 = 1, where p represents the dominant allele and q represents the recessive allele.) *Be sure to account for all 200 people in the population.arrow_forwardFor a gene existing in two alleles, what are the allele frequencies when the heterozygote frequency is at its maximum value, assuming Hardy-Weinberg equilibrium? What if there are three alleles?arrow_forwardIn smurfs, blue tails and red tails are codominant to white tails (this is similar to blood type in humans). In a population of 200 smurfs, 6 have white tails, 93 have blue tails, 51 have red tails, and 50 have purple tails. Papa smurf has learned that the frequency of the blue tail allele is 0.53. Is this population in Hardy-Weinberg Equilibrium? Be sure to do a Chi-square test and show your work.arrow_forward
- Use the equation p2+2pq+q2+1.0 to solve the following problem. In a population of 100 squirrels there are 64 black ones, and the remaining are white. Black (B) is the dominant allele, and the white (b) is the recessive allele. If the population is in Hardy-Weinberg equilibrium, what is the frequency of the black squirrels that are heterozygous (BB) for their coat color. A. 0.48 B. 0.16 C.0.40 D. 0.32 E.0.64arrow_forwardAssume that the frequency of gene B in a hypothetical population Is 0.63, that there are only two alleles (B and b) of the gee in the population, that allele B is dominant over allele b, that neither allele has a selective advantage over the other, and that the population is at equilibrium with regard to this particular gene. And how many individuals in this population are expected to be of genotype BB according to the Hardy-Weinberg formula? (Assume that the total population size is 150) 71 52 118 60 131arrow_forwardIn a population at Hardy-Weinberg equilibrium, 190 out of 1000 individuals have polydactyly. Note that the trait is dominant. a. What is the frequency of the dominant and recessive alleles? b. How many are expected to be heterozygotes for the trait? c. How many are expected to be homozygous dominant?arrow_forward
- If the Hardy-Weinberg equation enables us to use information on genotype and allele frequencies to predict the genotype frequencies of the next generation. In a population of 100,000 people carrying the recessive allele a for albinism, there are: 100 aa albinos and 1800 Aa heterozygous carriers. What is a frequency of heterozygous carriers in the next generation? Calculate the frequency for the A allele and a allele. How this will chance the frequency of alleles in a population for the following generation?arrow_forwardHow Can We Measure Allele Frequencies in Populations? What are four assumptions of the HardyWeinberg law?arrow_forwardHow Can We Measure Allele Frequencies in Populations? Drawing on your newly acquired understanding of the HardyWeinberg equilibrium law, point out why the following statement is erroneous: Because most of the people in Sweden have blond hair and blue eyes, the genes for blond hair and blue eyes must be dominant in that population.arrow_forward
- What is the expected frequency of Gg while in Hardy-Weinberg Equilibrium if you have an allele frequency of G = 0.1 and g = 0.9 in a two allele system?arrow_forwardA sample of 100 individuals from a population that is dimorphic at the A locus has genotype counts as follows. AA: 30 Aa: 60 aa: 10 a) What are the allele frequencies in the population? b) What are the expected genotype frequencies, if the population were at HardyWeinberg equilibrium? c) Is the proportion of heterozygotes lower or higher than expected at Hardy-Weinberg equilibrium? What deviations from the assumptions of the model would best explain the observed difference?arrow_forwardIn a population with two alleles at the C locus (C and c), the frequency of the genotype cc is 0.17. Assuming that the C locus is at Hardy-Weinberg equilibrium in this population, what is the frequency of heterozygotes (Cc)? Round and report your answer to the second decimal place (0.00).arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning