Concept explainers
(III) Consider a parcel of air moving to a different altitude y in the Earth’s atmosphere (Fig. 19–33). As the parcel changes altitude it acquires the pressure P of the surrounding air. From Eq. 13–4 we have
where ρ is the parcel’s altitude-dependent mass density.
FIGURE 19–33 Problem 56.
During this motion, the parcel’s volume will change and, because air is a poor heat conductor, we assume this expansion or contraction will take place adiabatically. (a) Starting with Eq. 19–15, PVγ = constant, show that for an ideal gas undergoing an adiabatic process, P1−γTγ = constant. Then show that the parcel’s pressure and temperature are related by
and thus
(b) Use the
where m is the average mass of an air molecule and k is the Boltzmann constant. (c) Given that air is a diatomic gas with an average molecular mass of 29, show that dT/dy = −9.8 C°/km. This value is called the adiabatic lapse rate for dry air. (d) In California, the prevailing westerly winds descend from one of the highest elevations (the 4000-m Sierra Nevada mountains) to one of the lowest elevations (Death Valley, −100 m) in the continental United States. If a dry wind has a temperature of −5°C at the top of the Sierra Nevada, what is the wind’s temperature after it has descended to Death Valley?
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Introductory Chemistry (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- For the following circuit, consider the resistor values given in the table and that it is powered by a battery having a fem of ε= 10.0 V and internal resistance r= 1.50 Ω. Determine:(a)Equivalent resistance from points a and b.b)Potential difference of EACH of the seven resistors.arrow_forwardANSWER ALL PARTS OF THE QUESTION AND SHOW/EXPLAIN YOUR WORK.arrow_forwardANSWER ALL PARTS OF THE QUESTION AND SHOW/EXPLAIN YOUR WORK.arrow_forward
- ANSWER ALL PARTS OF THE QUESTION AND SHOW/EXPLAIN YOUR WORK.arrow_forwardA glass flask whose volume is 1000 cm³ at a temperature of 0.300 °C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 °C, a volume of 8.10 cm³ of mercury overflows the flask. Part A If the coefficient of volume expansion of mercury is ẞHg = 1.80x104/K, compute glass. the coefficient of volume expansion of the glass. Express your answer in inverse kelvins. ▸ View Available Hint(s) Biglass= Submit ΜΕ ΑΣΦ W ? /Karrow_forwardSam is trying to move a dresser of mass mm and dimensions of length LL and height HH by pushing it with a horizontal force F⃗ F→ applied at a height hh above the floor. (Figure 1)The coefficient of kinetic friction between the dresser and the floor is μkμk and gg is the magnitude of the acceleration due to gravity. The ground exerts upward normal forces of magnitudes NPNP and NQNQ at the two ends of the dresser. Note that this problem is two dimensional.arrow_forward
- question about how the author got the equation in the red box from, as it makes no sensearrow_forwardNo Chatgpt please will upvote harrow_forwardHelicobacter pylori (H. pylori) is a helically-shaped bacterium that is usually found in the stomach. It burrows through the gastric mucous lining to establish an infection in the stomach's epithelial cells (see photo). Approximately 90% of the people infected with H. pylori will never experience symptoms. Others may develop peptic ulcers and show symptoms of chronic gastritis. The method of motility of H. pylori is a prokaryotic flagellum attached to the back of the bacterium that rigidly rotates like a propeller on a ship. The flagellum is composed of proteins and is approximately 40.0 nm in diameter and can reach rotation speeds as high as 1.50 x 103 rpm. If the speed of the bacterium is 10.0 μm/s, how far has it moved in the time it takes the flagellum to rotate through an angular displacement of 5.00 * 10² rad? Zina Deretsky, National Science Foundation/Flickr H. PYLORI CROSSING MUCUS LAYER OF STOMACH H.pylori Gastric Epithelial mucin cells gel Number i 318 Units um H.pylori…arrow_forward
- T1. Calculate what is the received frequency when the car drives away from the radar antenna at a speed v of a) 1 m/s ( = 3.6 km/h), b) 10 m/s ( = 36 km/h), c) 30 m /s ( = 108 km/h) . The radar transmission frequency f is 24.125 GHz = 24.125*10^9 Hz, about 24 GHz. Speed of light 2.998 *10^8 m/s.arrow_forwardNo Chatgpt please will upvotearrow_forwardNo Chatgpt please will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning