(a)
Interpretation:
The statement that oxidation and reduction occur at electrodes in a voltaic cell is to be classified as true or false.
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that oxidation and reduction occur at electrodes in a voltaic cell is true.
Explanation of Solution
A voltaic cell is the cell in which the chemical energy, which is produced by a redox reaction, is changed to electrical energy. In a voltaic cell, both
The statement that oxidation and reduction occur at electrodes in a voltaic cell is true.
(b)
Interpretation:
The statement that the sum of the oxidation numbers is zero in a molecular compound, but that sum may or may not be zero in an ionic compound is to be classified as true or false.
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that the sum of the oxidation numbers is zero in a molecular compound, but that sum may or may not be zero in an ionic compound is false.
Explanation of Solution
The sum of the oxidation numbers in a molecular compound is equal to zero. For example,
The statement that the sum of the oxidation numbers is zero in a molecular compound, but that sum may or may not be zero in an ionic compound is false.
(c)
Interpretation:
The statement that the oxidation number of oxygen is the same in the compounds
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that the oxidation number of oxygen is the same in the compounds
Explanation of Solution
The oxidation number of
The oxidation number of
Substitute the values of charge on
Therefore, the oxidation number of
The oxidation number of
Substitute the values of charge on
Therefore, the oxidation number of
The oxidation number of
Substitute the values of charge on
Therefore, the oxidation number of
The oxidation number of oxygen is the same in the compounds
The statement that the oxidation number of oxygen is the same in the compounds
(d)
Interpretation:
The statement that the oxidation number of alkali metals is always
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that the oxidation number of alkali metals is always
Explanation of Solution
The alkali metals are the elements present in the group
The statement that the oxidation number of alkali metals is always
(e)
Interpretation:
The statement that a substance that gains electrons is oxidized is to be classified as true or false.
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that a substance that gains electrons is oxidized is false.
Explanation of Solution
Reduction is the process in which a substance gains electrons, whereas oxidation is the process in which a substance loses electrons. Therefore, a substance that gains electrons is said to be reduced.
The statement that a substance that gains electrons is oxidized is false.
(f)
Interpretation:
The statement that a strong reducing agent has a strong attraction for electrons is to be classified as true or false.
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that a strong reducing agent has a strong attraction for electrons is false.
Explanation of Solution
A reducing agent is a substance that undergoes oxidation in a redox reaction. During oxidation, the substance has a tendency to lose electrons. This means that a strong reducing agent does not have a strong attraction for electrons.
The statement that a strong reducing agent has a strong attraction for electrons is false.
(g)
Interpretation:
The statement that the favored side of a redox equilibrium equation is the side with the weaker oxidizer and reducer is to be classified as true or false.
Concept introduction:
The process in which oxygen is added or a hydrogen atom is removed from a substance is known as oxidation and the process in which hydrogen is added or an oxygen atom is removed from a substance is known as reduction. The addition of an electronegative atom to another substance is also known as oxidation and the addition of an electropositive atom to another substance is known as reduction. A reducing agent is a substance that undergoes oxidation and an oxidizing agent is a substance that undergoes reduction.

Answer to Problem 54E
The statement that the favored side of a redox equilibrium equation is the side with the weaker oxidizer and reducer is true.
Explanation of Solution
In a redox reaction, the reducing agent is known as the reducer and the oxidizing agent is known as the oxidizer. The reducer loses electrons and these electrons are gained by the oxidizer. The stronger reducer and the stronger oxidizer react to form the weaker reducer and the weaker oxidizer. At equilibrium, the weaker reducer and the weaker oxidizer are favored.
The statement that the favored side of a redox equilibrium equation is the side with the weaker oxidizer and reducer is true.
Want to see more full solutions like this?
Chapter 19 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Name an interesting derivative of barbituric acid, describing its structure.arrow_forwardBriefly describe the synthesis mechanism of barbituric acid from the condensation of urea with a β-diketone.arrow_forwardGiven the hydrazones indicated, draw the structures of the enamines that can be formed. Indicate the most stable enamine (explain). C6H5 C6H5 H C6H5 Harrow_forward
- 4. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn.arrow_forwardIndicate the importance of the indole ring. Find a representative example and list 5 structures.arrow_forwardΌΗ 1) V2 CO 3 or Nalt In منهarrow_forward
- 6. The equilibrium constant for the reaction 2 HBr (g) → H2(g) + Br2(g) Can be expressed by the empirical formula 11790 K In K-6.375 + 0.6415 In(T K-¹) - T Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at 100 °C.arrow_forward3. Nitrosyl chloride, NOCI, decomposes according to 2 NOCI (g) → 2 NO(g) + Cl2(g) Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P. Given that K₂ = 2.00 × 10-4, calculate Seq/ of 29/no when P = 0.080 bar. What is the new value по ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's Principle?arrow_forwardConsider the following chemical equilibrium: 2SO2(g) + O2(g) = 2SO3(g) • Write the equilibrium constant expression for this reaction. Now compare it to the equilibrium constant expression for the related reaction: • . 1 SO2(g) + O2(g) = SO3(g) 2 How do these two equilibrium expressions differ? What important principle about the dependence of equilibrium constants on the stoichiometry of a reaction can you learn from this comparison?arrow_forward
- Given Kp for 2 reactions. Find the Kp for the following reaction: BrCl(g)+ 1/2 I2(g) ->IBr(g) + 1/2 Cl2(g)arrow_forwardFor a certain gas-phase reaction at constant pressure, the equilibrium constant Kp is observed to double when the temperature increases from 300 K to 400 K. Calculate the enthalpy change of the reaction, Ah, using this information.arrow_forwardHydrogen bonding in water plays a key role in its physical properties. Assume that the energy required to break a hydrogen bond is approximately 8 kJ/mol. Consider a simplified two-state model where a "formed" hydrogen bond is in the ground state and a "broken" bond is in the excited state. Using this model: • Calculate the fraction of broken hydrogen bonds at T = 300 K, and also at T = 273 K and T = 373 K. • At what temperature would approximately 50% of the hydrogen bonds be broken? • What does your result imply about the accuracy or limitations of the two-state model in describing hydrogen bonding in water? Finally, applying your understanding: • Would you expect it to be easier or harder to vaporize water at higher temperatures? Why? If you were to hang wet laundry outside, would it dry more quickly on a warm summer day or on a cold winter day, assuming humidity is constant?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning



