(a)
Interpretation:
The element experiencing oxidation or reduction, the species being oxidized or reduced and the change in oxidation number are to be stated.
Concept introduction:
A species gain or loses electrons to form anions or cations respectively. If an atom loses an electron, the atom is said to be oxidized and the process is called oxidation. Similarly, if the atom gains electrons it is said to be reduced and the process is called reduction. To keep a track on the loss or gain of an electron, a number is assigned in the form of oxidation number.
(b)
Interpretation:
The element experiencing oxidation or reduction, the species being oxidized or reduced and the change in oxidation number are to be stated.
Concept introduction:
A species gain or loses electrons to form anions or cations respectively. If an atom loses an electron, the atom is said to be oxidized and the process is called oxidation. Similarly, if the atom gains electrons it is said to be reduced and the process is called reduction. To keep a track on the loss or gain of an electron, a number is assigned in the form of oxidation number.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Bromine is obtained from sea water by the following redox reaction: Cl2(g) + 2 NaBr(aq) 2 NaCl(aq) + Br2() (a) What has been oxidized? What has been reduced? (b) Identify the oxidizing and reducing agents.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardGold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forward
- Xenon trioxide, XeO3, reacts with aqueous base to form the xenate anion, HXeO4. This ion reacts further with OH to form the perxenate anion, XeO64, in the following reaction: 2HXeO4(aq)+2OH(aq)XeO64(aq)+Xe(g)+O2(g)+2H2O(l) Identify the elements that are oxidized and reduced in this reaction. You will note that the equation is balanced with respect to the number of atoms on either side. Verify that the redox part of this equation is also balanced, that is, that the extents of oxidation and reduction are also equal.arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardOne of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forward
- The Ostwald process for the commercial production of nitric acid involves the Following three steps: 4NH3(g)+5O2(g)4NO(g)+6H2O(s)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Which reaction in the Ostwald process are oxidation-reduction reactions? b. Identify each oxidizing agent and reducing agent.arrow_forwardBalance the equation for the following precipitation reaction, and then write the net ionic equation. Indicate the state of each species (s, , aq, or g). CdCl2+NaOHCd(OH)2+NaClarrow_forwardSodium thiosulfate, Na2S2O3, is used as a fixer in black-and-white photography. Suppose you have a bottle of sodium thiosulfate and want to determine its purity. The thiosulfate ion can be oxidized with I2 according to the balanced, net ionic equation I2(aq) + 2 S2O32(aq) 2 I(aq) + S4O62 (aq) If you use 40.21 mL of 0.246 M I2 in a titration, what is the weight percent of Na2S2O3 in a 3.232-g sample of impure material?arrow_forward
- Write balanced net ionic equations for the following reactions in acid solution. (a) Liquid hydrazine reacts with an aqueous solution of sodium bromate. Nitrogen gas and bromide ions are formed. (b) Solid phosphorus (P4) reacts with an aqueous solution of nitrate to form nitrogen oxide gas and dihydrogen phosphate (H2PO4-) ions. (c) Aqueous solutions of potassium sulfite and potassium permanganate react. Sulfate and manganese(II) ions are formed.arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forwardBalance each of the following equations, and classify them as precipitation, acid-base, gas-forming, or oxidation-reduction reactions. Show states for reactants and products (s, , g, aq). (a) CuCl2 + H2S CuS + HCl (b) H3PO4 + KOH H2O + K3PO4 (c) Ca +HBr H2 + CaBr2 (d) MgC12 + NaOH Mg(OH)2 + NaClarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning