
Concept explainers
(a)
Interpretation:
The number of unpaired electrons in octahedral complexes with weak field ligands in Rh3+needs to be determined.
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to
a ligand which can be neutral, cation or anion. A transition metal cation has no outer s- electrons available for bonding, rather the inner d -electrons (in case of 3d transition metal elements) are available for making coordinate bonds with the ligands. Electrons are distributed in the five d- orbitals according to Hund’s rule which results in a maximum number of unpaired electrons. The abbreviated electronic configuration of an element depicts the electronic configuration of the elements by making use of noble gas configuration as they have fully-filled electron shells.

Answer to Problem 42QAP
There are four unpaired electrons in Rh3+.
Explanation of Solution
In case of transition metal cations, the electrons that are present beyond the noble gas are in their inner d- orbitals (4d orbitals in case of 4d transition metal elements), this means that they have no outer s- electrons. The distribution of electrons is according to Hund’s rule which states that when orbitals of equal energy are available, then electrons enter singly in the respective orbitals, this gives rise to maximum number of unpaired electrons in transition metal cations.
Rhodium is a 4d
When it loses three electrons, it leads to the formation of Rh3+ cation, and its abbreviated electronic configuration is written as [Kr] 4d6.
The distribution of electrons in the 4d orbitals when no ligand is present is given as follows:
In case of octahedral complexes, the distribution of electrons in the five d-orbitals takes place as per the crystal field theory according to which in octahedral complexes as the ligand approaches the central metal atom its d -orbitals get split into lower energy orbitals
Weak field ligands are unable to interact with the metal d-orbitals; therefore they are unable to cause pairing of the metal d-electrons. The compound so formed is a high spin complex which contains maximum number of unpaired electrons.
The distribution of electrons is shown below:
Thus, high spin complex of Rh3+ contains three unpaired electrons when it is bonded to weak field ligands.
(b)
Interpretation:
The number of unpaired electrons in octahedral complexes with weak field ligands for Mn3+ needs to be determined.
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to
a ligand which can be neutral, cation or anion. A transition metal cation has no outer s- electrons available for bonding, rather the inner d -electrons (in case of 3d transition metal elements) are available for making coordinate bonds with the ligands. Electrons are distributed in the five d- orbitals according to Hund’s rule which results in a maximum number of unpaired electrons. The abbreviated electronic configuration of an element depicts the electronic configuration of the elements by making use of noble gas configuration as they have fully-filled electron shells.

Answer to Problem 42QAP
There are four unpaired electrons in Mn3+.
Explanation of Solution
Manganese is a 3d transition metal element and its atomic number is 25.Its abbreviated electronic configuration can be written as [Ar] 3d5 4s2.
When it loses three electrons it leads to the formation of Mn3+ cation, and its abbreviated electronic configuration is written as [Ar] 3d4.
The distribution of electrons in the 3d orbitals when no ligand is present is given as follows:
In case of octahedral complexes, the distribution of electrons in the five d-orbitals takes place as per the crystal field theory according to which in octahedral complexes as the ligand approaches the central metal atom its d -orbitals get split into lower energy orbitals
Weak field ligands are unable to interact with the metal d-orbitals; therefore they are unable to cause pairing of the metal d-electrons. The compound so formed is a high spin complex which contains maximum number of unpaired electrons.
The distribution of electrons is shown below:
Thus, the high spin complex of Mn3+ contains four unpaired electrons.
(c)
Interpretation:
The number of unpaired electrons in octahedral complexes with weak field ligands for Ag+ needs to be determined.
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to
a ligand which can be neutral, cation or anion. A transition metal cation has no outer s- electrons available for bonding, rather the inner d -electrons (in case of 3d transition metal elements) are available for making coordinate bonds with the ligands. Electrons are distributed in the five d- orbitals according to Hund’s rule which results in a maximum number of unpaired electrons. The abbreviated electronic configuration of an element depicts the electronic configuration of the elements by making use of noble gas configuration as they have fully-filled electron shells.

Answer to Problem 42QAP
There are zero unpaired electrons in Ag+.
Explanation of Solution
Silver is a 4d transition metal element and its atomic number is 47. Its abbreviated electronic configuration can be written as [Kr] 4d10 5s1.
When it loses one electron it leads to the formation of Ag+ cation, and its abbreviated electronic configuration is written as [Kr] 4d10.
The distribution of electrons in the 4d orbitals when no ligand is present is given as follows:
In case of octahedral complexes, the distribution of electrons in the five d-orbitals takes place as per the crystal field theory according to which in octahedral complexes as the ligand approaches the central metal atom its d -orbitals get split into lower energy orbitals
Weak field ligands are unable to interact with the metal d-orbitals; therefore, they are unable to cause pairing of the metal d-electrons. The compound so formed is a high spin complex which contains maximum number of unpaired electrons.
The distribution of electrons is shown below:
The electrons remain paired in case of weak field ligands also. From the above electronic distribution,Ag+ does not contain any unpaired electrons.
(d)
Interpretation:
The number of unpaired electrons in octahedral complexes with weak field ligands for Pt4+needs to be determined.
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to
a ligand which can be neutral, cation or anion. A transition metal cation has no outer s- electrons available for bonding, rather the inner d -electrons (in case of 3d transition metal elements) are available for making coordinate bonds with the ligands. Electrons are distributed in the five d- orbitals according to Hund’s rule which results in a maximum number of unpaired electrons. The abbreviated electronic configuration of an element depicts the electronic configuration of the elements by making use of noble gas configuration as they have fully-filled electron shells.

Answer to Problem 42QAP
There are four unpaired electrons in Pt4+.
Explanation of Solution
Platinum is a 5d transition metal element and its atomic number is 78. Its abbreviated electronic configuration can be written as [Xe] 4f14 5d9 6s1.
When it loses four electrons it leads to the formation of Pt4+ cation, and its abbreviated electronic configuration is written as [Xe] 4f14 5d6
The distribution of electrons in the 5d orbitals when no ligand is present is given as follows:
In case of octahedral complexes, the distribution of electrons in the five d-orbitals takes place as per the crystal field theory according to which in octahedral complexes as the ligand approaches the central metal atom its d -orbitals get split into lower energy orbitals
Weak field ligands are unable to interact with the metal d-orbitals; therefore, they are unable to cause pairing of the metal d-electrons. The compound so formed is a high spin complex which contains maximum number of unpaired electrons.
The distribution of electrons is shown below:
Thus, the high spin complex of Pt4+ contains four unpaired electrons.
(e)
Interpretation:
The number of unpaired electrons in octahedral complexes with weak field ligands for Au3+ needs to be determined.
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to a ligand which can be neutral, cation or anion. A transition metal cation has no outer s- electrons available for bonding, rather the inner d -electrons (in case of 3d transition metal elements) are available for making coordinate bonds with the ligands. Electrons are distributed in the five d- orbitals according to Hund’s rule which results in a maximum number of unpaired electrons. The abbreviated electronic configuration of an element depicts the electronic configuration of the elements by making use of noble gas configuration as they have fully-filled electron shells.

Answer to Problem 42QAP
There are two unpaired electrons in Au3+.
Explanation of Solution
Gold is a 5d transition metal element and its atomic number is 79. Its abbreviated electronic configuration can be written as [Xe] 4f14 5d10 6s1.
When it loses three electrons it leads to the formation of Au3+ cation, and its abbreviated electronic configuration is written as [Xe] 4f14 5d8
The distribution of electrons in the 5d orbitals when no ligand is present is given as follows:
In case of octahedral complexes, the distribution of electrons in the five d-orbitals takes place as per the crystal field theory according to which in octahedral complexes as the ligand approaches the central metal atom its d -orbitals get split into lower energy orbitals
Weak field ligands are unable to interact with the metal d-orbitals; therefore, they are unable to cause pairing of the metal d-electrons. The compound so formed is a high spin complex which contains maximum number of unpaired electrons.
The distribution of electrons is shown below:
From the above electronic distribution, Au3+ contains two unpaired electrons.
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry: Principles and Reactions
- The following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward(ME EX2) Prblms Can you please explain problems to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Experiment #8 Electrical conductivity & Electrolytes. Conductivity of solutions FLINN Scientific Scale RED LED Green LED LED Conductivity 0 OFF OFF 1 Dim OFF 2 medium OFF 3 Bright Dim Low or Nowe Low Medium High 4 Very Bright Medium nd very high AA Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ SE=Strong Electrolyte, FE = Fair Electrolyte CWE = Weak Electrolyte, NE= Noni Electrolyte, #Solutions 1 0.1 M NaCl 2/1x 102 M NaCl, 3/1X103 M Nall Can Prediction M Observed Conductivity Very bright red Bright red Dim red you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAA Darrow_forward(SE EX 2) Prblsm 4-7: Can you please explain problems 4-7 and color code if needed for me. (step by step) detail explanationsarrow_forward(SE EX 2) Problems 8-11, can you please explain them to me in detail and color-code anything if necessary?arrow_forward
- (ME EX2) Problems 15-16 Could you please explain problems 15 through 16 to me in detail, step by step? Thank you so much! If necessary, please color-code them for me.arrow_forward1.)show any electrophilic aromatic substitution, identify the electriphile, nucleophile and transition statearrow_forward(SE EX 2) Problems 15-16, can you please explain them to me in detail and color-code anything if necessary?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





