Starting Out with C++: Early Objects (9th Edition)
Starting Out with C++: Early Objects (9th Edition)
9th Edition
ISBN: 9780134400242
Author: Tony Gaddis, Judy Walters, Godfrey Muganda
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 3PC
Program Plan Intro

Leaf Counter

Program Plan:

Main.cpp:

  • Include required header files.
  • Inside the “main ()” function,
    • Display the number of leaf nodes by calling the function “num_LeafNodes ()”.
    • Insert nodes into the binary tree by using the function “insert_Node ()”.
    • Display those nodes by using the function “display_InOrder ()”.
    • Now, display the number of leaf nodes by calling the function “num_LeafNodes ()”.
    • Delete two nodes from the binary tree by using the function “remove ()”.
    • Display remaining nodes by using the function “display_InOrder ()”.
    • Finally, display the number of leaf nodes by calling the function “num_LeafNodes ()”.

BinaryTree.h:

  • Include required header files.
  • Create a class template.
  • Declare a class named “BinaryTree”. Inside the class,
    • Inside the “private” access specifier,
      • Give the structure declaration for the creation of node.
        • Create an object for the template.
        • Create two pointers named “left_Node” and “right_Node” to access the value left and right nodes respectively.
      • Declare a variable “leafCount”.
      • Create a pointer named “root” to access the value of root node.
      • Give function declaration for “insert ()”, “destroy_SubTree ()”, “delete_Node ()”, “make_Deletion ()”, “display_InOrder ()”, “display_PreOrder ()”, “display_PostOrder ()”, “count_Nodes ()”, “count_Leaves ()”.
    • Inside “public” access specifier,
      • Give the definition for constructor and destructor.
      • Give function declaration.
  • Declare template class.
  • Give function definition for “insert ()”.
    • Check if “nodePtr” is null.
      • If the condition is true then, insert node.
    • Check if value of new node is less than the value of node pointer
      • If the condition is true then, Insert node to the left branch by calling the function “insert ()” recursively.
    • Else
      • Insert node to the right branch by calling the function “insert ()” recursively.
  • Declare template class.
  • Give function definition for “insert_Node ()”.
    • Create a pointer for new node.
    • Assign the value to the new node.
    • Make left and right node as null
    • Call the function “insert ()” by passing parameters “root” and “newNode”.
  • Declare template class.
  • Give function definition for “destroy_SubTree ()”.
    • Check if the node pointer points to left node
      • Call the function recursively to delete the left sub tree.
    • Check if the node pointer points to the right node
      • Call the function recursively to delete the right sub tree.
    • Delete the node pointer.
  • Declare template class.
  • Give function definition for “search_Node ()”.
    • Assign false to the Boolean variable “status”.
    • Assign root pointer to the “nodePtr”.
    • Do until “nodePtr” exists.
      • Check if the value of node pointer is equal to “num”.
        • Assign true to the Boolean variable “status”
      • Check if the number is less than the value of node pointer.
        • Assign left node pointer to the node pointer.
      • Else
        • Assign right node pointer to the node pointer.
    • Return the Boolean variable.
  • Declare template class.
  • Give function definition for “remove ()”.
    • Call the function “delete_Node ()”
  • Declare template class.
  • Give function definition for “delete_Node ()”
    • Check if the number is less than the node pointer value.
      • Call the function “delete_Node ()” recursively.
    • Check if the number is greater than the node pointer value.
      • Call the function “delete_Node ()” recursively.
    • Else,
      • Call the function “make_Deletion ()”.
  • Declare template class.
  • Give function definition for “make_Deletion ()”
    • Create pointer named “tempPtr”.
    • Check if the nodePtr is null.
      • If the condition is true then, print “Cannot delete empty node.”
    • Check if right node pointer is null.
      • If the condition is true then,
        • Make the node pointer as the temporary pointer.
        • Reattach the left node child.
        • Delete temporary pointer.
    • Check is left node pointer is null
      • If the condition is true then,
        • Make the node pointer as the temporary pointer.
        • Reattach the right node child.
        • Delete temporary pointer.
    • Else,
      • Move right node to temporary pointer
      • Reach to the end of left-Node using “while” condition.
        • Assign left node pointer to temporary pointer.
      • Reattach left node sub tree.
      • Make node pointer as the temporary pointer.
      • Reattach right node sub tree
      • Delete temporary pointer.
  • Declare template class.
  • Give function definition for “display_InOrder ()”.
    • Check if the node pointer exists.
      • Call the function “display_InOrder ()” recursively.
      • Print the value
      • Call the function “display_InOrder ()” recursively.
  • Declare template class.
  • Give function definition for “display_PreOrder ()”.
    • Print the value.
    • Call the function “display_PreOrder ()” recursively.
    • Call the function “display_PreOrder ()” recursively.
  • Declare template class.
  • Give function definition for “display_PostOrder ()”.
    • Call the function “display_PostOrder ()” recursively.
    • Call the function “display_PostOrder ()” recursively.
    • Print value
  • Declare template class.
  • Give function definition for “numNodes ()”.
    • Call the function “count_Nodes ()”.
  • Declare template class.
  • Give function definition for “count_Nodes ()”.
    • Declare a variable named “count”.
    • Check if the node pointer is null
      • Assign 0 to count.
    • Else,
      • Call the function “count_Nodes ()” recursively.
    • Return the variable “count”.
  • Declare template class.
  • Give function definition for “num_LeafNodes()”.
    • Assign 0 to “leafCount”
    • Call the function “count_Leaves ()”
    • Return the variable.
  • Declare template class.
  • Give function definition for “count_Leaves()”.
    • Call the function “count_Leaves ()” recursively by passing left node pointer as the parameter.
    • Call the function “count_Leaves ()” recursively by passing right node pointer as the parameter.
    • Check if left and right node pointers are null.
      • Increment the variable “leafCount”.

Blurred answer
Students have asked these similar questions
quick Solution please
struct insert_into_bst { // Function takes a constant Book as a parameter, inserts that book indexed by // the book's ISBN into a binary search tree, and returns nothing. void operator()(const Book& book) { // // TO-DO (7) ||| ///// // Write the lines of code to insert the key (book's ISBN) and value // ("book") pair into "my_bst". END-TO-DO (7) | } std::map& my_bst; };
C Programming language Part 1: You need to define a data structure for a doubly linked list and a binary search tree. Also, you need to implement the following functions: Insert Sorted LINKEDLIST insertSorted(LINKEDLIST head, int num): head points to the first node in the sorted linked list; num is a number to be inserted in in correct place in the linked list pointed at “head”. The linked list should be sorted after inserting “num”. This function returns the head of the modified head. BSTREE insert(BSTREE root, int num): root points to a node in a binary search tree; num is a number to be inserted in the tree rooted at “root”. This function returns the root of the modified tree. Find an element LINKEDLIST find(LINKEDLIST head,int num): head points to the first node of a linked list; num is a number to be searched for in the linked list started at “head”. This function returns a pointer to the node containing “num” or NULL if num is not found BSTREE find(BSTREE root,int…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education