EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 30QLP
Explain why operations such as blow molding and film-bag making are performed vertically.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
6. Consider a 10N step input to the mechanical system shown below, take M = 15kg, K = 135N/m, and
b = 0.4 Ns/m.
(a) Assume zero initial condition, calculate the
(i)
System pole
(ii)
System characterization, and
(iii) The time domain response
(b) Calculate the steady-state value of the system
b
[
www
K
个
х
M
-F(+)
2. Solve the following linear time invariant differential equations using Laplace transforms subject to
different initial conditions
(a) y-y=t
for y(0) = 1 and y(0) = 1
(b) ÿ+4y+ 4y = u(t)
for y(0) = 0 and y(0) = 1
(c) y-y-2y=0
for y(0) = 1 and y(0) = 0
3. For the mechanical systems shown below, the springs are undeflected when x₁ = x2 = x3 = 0 and
the input is given as fa(t). Draw the free-body diagrams and write the modeling equations governing
each of the systems.
K₁
000
K₂
000
M₁
M2
-fa(t)
B₂
B₁
(a)
fa(t)
M2
K₂
000
B
K₁
x1
000
M₁
(b)
Chapter 19 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 19 - What are the forms of raw materials for processing...Ch. 19 - What is extrusion? What products are produced by...Ch. 19 - Describe the features of an extruder screw and...Ch. 19 - How are injection-molding machines rated?Ch. 19 - What is (a) a parison, (b) a plastisol, and (c) a...Ch. 19 - How is thin plastic film produced?Ch. 19 - List several common products that can be made by...Ch. 19 - What similarities and differences are there...Ch. 19 - Explain the difference between potting and...Ch. 19 - What is thermoforming?
Ch. 19 - Describe runner, gate, sprue, and well.Ch. 19 - Describe the advantages of cold-forming plastics...Ch. 19 - What are the characteristics of filament-wound...Ch. 19 - Describe the methods that can be used to make...Ch. 19 - What is pultrusion? Pulforming?Ch. 19 - How are very thin plastic film produced?Ch. 19 - What process is used to make foam drinking cups?Ch. 19 - If a polymer is in the form of a thin sheet, is it...Ch. 19 - How are polymer fibers made? Why are they much...Ch. 19 - What are the advantages of coextrusion?Ch. 19 - Explain how latex rubber gloves are made.Ch. 19 - Describe the features of a screw extruder...Ch. 19 - Explain why injection molding is capable of...Ch. 19 - Prob. 24QLPCh. 19 - Explain the reasons that some plastic-forming...Ch. 19 - Describe the problems involved in recycling...Ch. 19 - Can thermosetting plastics be used in injection...Ch. 19 - Inspect some plastic containers, such as those...Ch. 19 - An injection-molded nylon gear is found to contain...Ch. 19 - Explain why operations such as blow molding and...Ch. 19 - Prob. 31QLPCh. 19 - Typical production rates are given in Table 19.2....Ch. 19 - What determines the cycle time for (a) injection...Ch. 19 - Does the pull-in defect (sink marks) shown in Fig....Ch. 19 - What determines the intervals at which the...Ch. 19 - Identify processes that would be suitable for...Ch. 19 - Identify processes that are capable of producing...Ch. 19 - Inspect several electrical components, such as...Ch. 19 - Inspect several similar products that are made of...Ch. 19 - What are the advantages of using whiskers a...Ch. 19 - Construct a table that lists the main...Ch. 19 - Estimate the die-clamping force required for...Ch. 19 - A 2-Iitcr plastic beverage bottle is made by blow...Ch. 19 - Consider a Styrofoam drinking cup. Measure the...Ch. 19 - In Fig. 19.2, what flight angle, , should be used...Ch. 19 - Make a survey of a variety of sports equipment,...Ch. 19 - Explain the design considerations involved in...Ch. 19 - Give examples of several parts suitable for insert...Ch. 19 - Give other examples of design modifications in...Ch. 19 - With specific examples, discuss the design issues...Ch. 19 - Die swell in extrusion is radially uniform for...Ch. 19 - Inspect various plastic components in a typical...Ch. 19 - It is well known that plastic forks, spoons, and...Ch. 19 - Prob. 55SDPCh. 19 - Make a survey of the technical literature, and...Ch. 19 - Prob. 57SDPCh. 19 - Prob. 58SDPCh. 19 - Prob. 59SDPCh. 19 - Examine some common and colorful plastic poker...Ch. 19 - Obtain different styles of toothpaste tubes,...Ch. 19 - By incorporating small amounts of blowing agent,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- This question i m uploading second time . before you provide me incorrect answer. read the question carefully and solve accordily.arrow_forward1. Create a table comparing five different analogous variables for translational, rotational, electrical and fluid systems. Include the standard symbols for each variable in their respective systems.arrow_forward2) Suppose that two unequal masses m₁ and m₂ are moving with initial velocities v₁ and v₂, respectively. The masses hit each other and have a coefficient of restitution e. After the impact, mass 1 and 2 head to their respective gaps at angles a and ẞ, respectively. Derive expressions for each of the angles in terms of the initial velocities and the coefficient of restitution. m1 m2 8 m1 m2 βarrow_forward
- 4. Find the equivalent spring constant and equivalent viscous-friction coefficient for the systems shown below. @ B₁ B₂ H B3 (b)arrow_forward5. The cart shown below is inclined 30 degrees with respect to the horizontal. At t=0s, the cart is released from rest (i.e. with no initial velocity). If the air resistance is proportional to the velocity squared. Analytically determine the initial acceleration and final or steady-state velocity of the cart. Take M= 900 kg and b 44.145 Ns²/m². Mg -bx 2 отarrow_forward9₁ A Insulated boundary Insulated boundary dx Let's begin with the strong form for a steady-state one-dimensional heat conduction problem, without convection. d dT + Q = dx dx According to Fourier's law of heat conduction, the heat flux q(x), is dT q(x)=-k dx. x Q is the internal heat source, which heat is generated per unit time per unit volume. q(x) and q(x + dx) are the heat flux conducted into the control volume at x and x + dx, respectively. k is thermal conductivity along the x direction, A is the cross-section area perpendicular to heat flux q(x). T is the temperature, and is the temperature gradient. dT dx 1. Derive the weak form using w(x) as the weight function. 2. Consider the following scenario: a 1D block is 3 m long (L = 3 m), with constant cross-section area A = 1 m². The left free surface of the block (x = 0) is maintained at a constant temperature of 200 °C, and the right surface (x = L = 3m) is insulated. Recall that Neumann boundary conditions are naturally satisfied…arrow_forward
- 1 - Clearly identify the system and its mass and energy exchanges between each system and its surroundings by drawing a box to represent the system boundary, and showing the exchanges by input and output arrows. You may want to search and check the systems on the Internet in case you are not familiar with their operations. A pot with boiling water on a gas stove A domestic electric water heater A motor cycle driven on the roadfrom thermodynamics You just need to draw and put arrows on the first part a b and carrow_forward7. A distributed load w(x) = 4x1/3 acts on the beam AB shown in Figure 7, where x is measured in meters and w is in kN/m. The length of the beam is L = 4 m. Find the moment of the resultant force about the point B. w(x) per unit length L Figure 7 Barrow_forward4. The press in Figure 4 is used to crush a small rock at E. The press comprises three links ABC, CDE and BG, pinned to each other at B and C, and to the ground at D and G. Sketch free-body diagrams of each component and hence determine the force exerted on the rock when a vertical force F = 400 N is applied at A. 210 80 80 C F 200 B 80 E 60% -O-D G All dimensions in mm. Figure 4arrow_forward
- 2. Figure 2 shows a device for lifting bricks and concrete blocks. It comprises two compo- nents ABC and BD, with a frictionless pin at B. Determine the minimum coefficient of friction required at A and D if the device is to work satisfactorily. W all dimensions in inches Figure 2 Darrow_forward1. The shaft AD in Figure 1 supports two pulleys at B and C of radius 200 mm and 250 mm respectively. The shaft is supported in frictionless bearings at A and D and is rotating clockwise (when viewed from the right) at a constant speed of 300 rpm. Only bearing A can support thrust. The tensions T₁ = 200 N, T₂ = 400 N, and T3 = 300 N. The distances AB = 120 mm, BC = 150 mm, and CD120 mm. Find the tension 74 and the reaction forces at the bearings. A T fo Figure 1arrow_forward5. Figure 5 shows a two-dimensional idealization of the front suspension system for a car. During cornering, the road exerts a vertical force of 5 kN and a leftward horizontal force of 1.2 kN on the tire, which is of 510 mm diameter. Draw free-body diagrams of each component and determine the forces transmitted between them. 250 A -320 B 170 D 170 -220-220- all dimensions in mm. Figure 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Casting Metal: the Basics; Author: Casting the Future;https://www.youtube.com/watch?v=2CIcvB72dmk;License: Standard youtube license