Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
10th Edition
ISBN: 9781305957510
Author: ZUMDAHL, Steven S.; Zumdahl, Susan A.; DeCoste, Donald J.
Publisher: Cengage Learning
Question
Book Icon
Chapter 19, Problem 24E

(a)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(a)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 232Th and the nuclide after the emission of particles is 228Ra .

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(b)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(b)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 228Ra and the nuclide after the emission of particle is 228Ac

Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.

(c)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(c)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 228Ac and the nuclide after the emission of particle is 228Th

Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.

(d)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(d)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 228Th and the nuclide after the emission of particle is 224Ra

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(e)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(e)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 224Ra and the nuclide after the emission of particle is 220Rn .

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(f)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(f)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 220Rn and the nuclide after the emission of particle is 216Po

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(g)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(g)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 216Po and the nuclide after the emission of particle is 212Pb

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(h)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(h)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 212Pb and the nuclide after the emission of particle is 212Bi

Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.

(i)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(i)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 212Bi and the nuclide after the emission of particle is 212Po

Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.

(j)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(j)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 212Po and the nuclide after the emission of particle is 208Pb

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(k)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(k)

Expert Solution
Check Mark

Explanation of Solution

No particle is emitted.

The given species, that is 208Pb , is stable; hence, no particle is emitted.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.
Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answer
Part 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00

Chapter 19 Solutions

Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition

Ch. 19 - Prob. 1QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10QCh. 19 - Prob. 11QCh. 19 - Prob. 12QCh. 19 - Prob. 13QCh. 19 - Prob. 14QCh. 19 - Prob. 15ECh. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Prob. 18ECh. 19 - Prob. 19ECh. 19 - Prob. 20ECh. 19 - Prob. 21ECh. 19 - Prob. 22ECh. 19 - Prob. 23ECh. 19 - Prob. 24ECh. 19 - Prob. 27ECh. 19 - Prob. 28ECh. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 32ECh. 19 - Prob. 34ECh. 19 - Prob. 35ECh. 19 - Prob. 36ECh. 19 - Prob. 37ECh. 19 - Prob. 38ECh. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - Prob. 41ECh. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Prob. 45ECh. 19 - Prob. 46ECh. 19 - Prob. 47ECh. 19 - Prob. 48ECh. 19 - Prob. 49ECh. 19 - Prob. 50ECh. 19 - Prob. 52ECh. 19 - Prob. 53ECh. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Prob. 59ECh. 19 - Prob. 60ECh. 19 - Prob. 61ECh. 19 - Prob. 62ECh. 19 - Prob. 63ECh. 19 - Prob. 64ECh. 19 - Prob. 65AECh. 19 - Prob. 66AECh. 19 - Prob. 67AECh. 19 - Prob. 68AECh. 19 - Prob. 69AECh. 19 - Prob. 70AECh. 19 - Prob. 71AECh. 19 - Prob. 72AECh. 19 - Prob. 73AECh. 19 - Prob. 74AECh. 19 - Prob. 75AECh. 19 - Prob. 76AECh. 19 - Prob. 77AECh. 19 - Prob. 78AECh. 19 - Prob. 79AECh. 19 - Prob. 80AECh. 19 - Prob. 81CWPCh. 19 - Prob. 82CWPCh. 19 - Prob. 83CWPCh. 19 - Prob. 84CWPCh. 19 - Prob. 85CWPCh. 19 - Prob. 86CWPCh. 19 - Prob. 87CPCh. 19 - Prob. 88CPCh. 19 - Prob. 89CPCh. 19 - Prob. 90CPCh. 19 - Prob. 91CPCh. 19 - Prob. 92CPCh. 19 - Prob. 93CPCh. 19 - Prob. 94CPCh. 19 - Prob. 95IPCh. 19 - Prob. 96IP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning