Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 20EAP
An experiment measures the temperature of a 500 g substance while steadily supplying heat to it. FIGURE EX19.20 shows the results of the experiment. What are the (a) specific heat of the solid phase, (b) specific heat of the liquid phase, (c) melting and boiling temperatures, and (d) heats of fusion and vaporization?
FIGURE EX19.20
.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The heat of evaporation of water at atmospheric pressure is Lv 2260 kJ/kg.
a. How much of this heat represents work done to expand the water into steam against the pressure of the atmosphere?
b. What becomes of the rest of the heat? At T= 100°C and p=1.0 atm, the density of water is 1.00 × 10³ kg/m³ and the density of steam is 0.600kg/m³?
The air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.
A 100g cube of ice at 0°C is dropped into 1 kg of water that was originally
at 80°C.
What is the final temperature of the water after the ice melts and the
isolated system reaches thermal equilibrium? The latent heat of fusion of
water is 3.33 x 10$ J/kg and the specific heat of water is 4182 J/(K kg).
O 72.04°C
58.48°C
O 40°C
65.49°C
Chapter 19 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 19 - Prob. 1CQCh. 19 - Do (a) temperature, (b) heat, and (c) thermal...Ch. 19 - Prob. 3CQCh. 19 - You need to raise the temperature of a gas by...Ch. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - FIGURE Q19.7 shows two different processes taking...Ch. 19 - FIGURE Q19.8 shows two different processes taking...Ch. 19 - The gas cylinder in FIGURE Q19.9 is a rigid...Ch. 19 - The gas cylinder in FIGURE Q19.10 is well...
Ch. 19 - The gas cylinder in FIGURE Q19.11 is well...Ch. 19 - How much work is done on the gas in the process...Ch. 19 - Prob. 2EAPCh. 19 - Prob. 3EAPCh. 19 - A 2000 cm3 container holds 0.10 mol of helium gas...Ch. 19 - Prob. 5EAPCh. 19 - Prob. 6EAPCh. 19 - Draw a first-law bar chart (see Figure 19.12) for...Ch. 19 - Draw a first-law bar chart (see Figure 19.12) for...Ch. 19 - 9. Draw a first-law bar chart (see Figure 19.12)...Ch. 19 - Prob. 10EAPCh. 19 - J of work are done on a system in a process that...Ch. 19 - How much heat energy must be added to a...Ch. 19 - Prob. 13EAPCh. 19 - Prob. 14EAPCh. 19 - Prob. 15EAPCh. 19 - Prob. 16EAPCh. 19 - One way you keep from overheating is by...Ch. 19 - Prob. 18EAPCh. 19 - Two cars collide head-on while each is traveling...Ch. 19 - An experiment measures the temperature of a 500 g...Ch. 19 - 30 g of copper pellets are removed from a 300°C...Ch. 19 - A 750 g aluminum pan is removed from the stove and...Ch. 19 - A 50.0 g thermometer is used to measure the...Ch. 19 - A 500 g metal sphere is heated to 300°C, then...Ch. 19 - A 65 cm3 block of iron is removed from an 800°C...Ch. 19 - Prob. 26EAPCh. 19 - A container holds 1.0 g of oxygen at a pressure of...Ch. 19 - The volume of a gas is halved during an adiabatic...Ch. 19 - Prob. 29EAPCh. 19 - Prob. 30EAPCh. 19 - Prob. 31EAPCh. 19 - Prob. 32EAPCh. 19 - Prob. 33EAPCh. 19 - Prob. 34EAPCh. 19 - Prob. 35EAPCh. 19 - What maximum power can be radiated by a...Ch. 19 - Radiation from the head is a major source of heat...Ch. 19 - Prob. 38EAPCh. 19 - Prob. 39EAPCh. 19 - Prob. 40EAPCh. 19 - Prob. 41EAPCh. 19 - Prob. 42EAPCh. 19 - Prob. 43EAPCh. 19 - The specific heat of most solids is nearly...Ch. 19 - Prob. 45EAPCh. 19 - Prob. 46EAPCh. 19 - Prob. 47EAPCh. 19 - Prob. 48EAPCh. 19 - .0 mol of gas are at 30°C and a pressure of 1.5...Ch. 19 - A 6.0-cm-diameter cylinder of nitrogen gas has a...Ch. 19 - Prob. 51EAPCh. 19 - An ideal-gas process is described by p = cV 1/2 ,...Ch. 19 - Prob. 53EAPCh. 19 - Prob. 54EAPCh. 19 - Prob. 55EAPCh. 19 - Prob. 56EAPCh. 19 - Prob. 57EAPCh. 19 - .10 mol of nitrogen gas follow the two processes...Ch. 19 - Prob. 59EAPCh. 19 - Prob. 60EAPCh. 19 - Prob. 61EAPCh. 19 - Prob. 62EAPCh. 19 - Prob. 63EAPCh. 19 - Prob. 64EAPCh. 19 - Prob. 65EAPCh. 19 - Prob. 66EAPCh. 19 - Prob. 67EAPCh. 19 - Prob. 68EAPCh. 19 - Prob. 69EAPCh. 19 - A cylindrical copper rod and an iron rod with...Ch. 19 - Prob. 71EAPCh. 19 - Prob. 72EAPCh. 19 - Prob. 73EAPCh. 19 - Prob. 74EAPCh. 19 - Prob. 75EAPCh. 19 - Prob. 76EAPCh. 19 - Prob. 77EAPCh. 19 - Prob. 78EAPCh. 19 - Prob. 79EAPCh. 19 - Prob. 80EAPCh. 19 - Prob. 81EAPCh. 19 - Prob. 82EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardFive kg of fish (Cp = 3600 J / kgK) are packed in foam packaging with a heat transfer surface = 0.45 m2 and a heat transfer coefficient k = 0.025 W / (mK). The thickness of the packaging is 2 cm. The temperature inside the fish inside the box) is -1° C when packed. A a) How much heat flows out of the packaging if the box is left out at 20 ° C ambient temperature? b) How long does it take the fish to reach ambient temperature?arrow_forwardIn an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 10.3 oC. The temperature at the inside surface of the wall is 18.1 oC. The wall is 0.14 m thick and has an area of 6.5 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forward
- Thermal energy is being transferred through a 0.8 mm layer of human skin at a rate of 1.1 x 104 W/m2. The room temperature is 27 °C.To reduce heat flux, the skin is wrapped with a clothing material. What should be the thickness of the clothing material covering the surface of this skin tissue to reduce the heat flux to half of its original value? What is the temperature at the skin-clothing material interface? Note: if you think you need to have more information to solve this problem, you can make assumptions. Please state them clearly in your answer, if you need to make such assumptions.And please explain step by step to the answer to better understandingarrow_forwardResearchers are conducting a study to quantity the thermal conductivity of a composite material. A square box is made from 1932 cm2 sheets of the composite insulating material that is 5.2 cm thick. A 125 W heater is placed inside the box. Sensors attached to the box show that the interior and exterior surfaces of one face have reached the constant temperatures of 71°C and 23°C. What is the thermal conductivity in W/m-K?arrow_forwardAt a chemicalplant where you are an engineer,a tank contains an unknownliquid. You must determine theliquid’s specific heat capacity. Youput 0.500 kg of the liquid into aninsulated metal cup of mass 0.200 kg. Initially the liquid and cup are at20.0°C. You add 0.500 kg of water that has a temperature of 80.0°C. Afterthermal equilibrium has been reached, the final temperature of the twoliquids and the cup is 58.1°C. You then empty the cup and repeat the experimentwith the same initial temperatures, but this time with 1.00 kg ofthe unknown liquid. The final temperature is 49.3°C. Assume that the specificheat capacities are constant over the temperature range of the experimentand that no heat is lost to the surroundings. Calculate the specificheat capacity of the liquid and of the metal from which the cup is made.arrow_forward
- A rectangular window in a home has a length of 1.5 m and a height of 0.80 m. If the window allows heat to escape from the home at a rate of 2,000 watts, how thick must the window be if the inside temperature of the home is 220 C and the outside temperature is 3.00C? (Assume that the coefficient of thermal conduction of glass is 0.80 W/mK.) a. 7.1 mm b. 124 mm c. 9.1 mm d. 8.1 mm e. 11 mmarrow_forwardA solid concrete wall has dimensions 4.0 m × 2.4 m and is 30 cm thick. The thermal conductivity of the concrete is 1.3 W/m ∙ K, and it separates a basement from the ground outside. The inner surface of the wall is at 18°C, and the outside surface is at 6°C. How much heat flows through the wall every hour?arrow_forwardA classroom has dimensions 8.00 m x 10.00 m x 3.00 m. A 1000 W electric space heater is being used to warm the room from 5.00°C to 20.00°C on a cold morning. If the density of air is 1.29 kg/m°, and the specific heat capacity of air is 1004 J/(kg-K), how long will it take to heat the room? Assume no loss of thermal energy to the surroundings. A) 1.30 minutes B) 241 minutes C) 45.3 minutes O D) 77.7 minutesarrow_forward
- The air inside a garage is to be heated using a heat pump driven by a 545.00 W545.00 W electric motor. The outside air is at a temperature of −16.3 ∘C−16.3 ∘C and can be considered as a low‑temperature thermal energy reservoir. Heat loss from the garage is 12425.0 kJ/h.12425.0 kJ/h. What is the highest temperature that can be maintained in the garage? Assume a Carnot heat pump.arrow_forwardA 12 cm -diameter cylinder contains argon gas at 10 atm pressure and a temperature of 60 ∘C . A piston can slide in and out of the cylinder. The cylinder's initial length is 23 cm . 2600 J of heat are transferred to the gas, causing the gas to expand at constant pressure. What is the final temperature of the cylinder? What is the final length of the cylinder?arrow_forwardA 880 cm X 1680 cm house is built on a 15.6 cm thick concrete slab of thermal conductivity 0.62 W/m.K.. If the ground temperature of the slab is 7.6ºC while the interior of the house is 21ºC. Calculate the following: a) The temperature difference in kelvin Answer for part 1 . b) The temperature gradient (ΔT/Δx) in kelvin/metre Answer for part 2 . c) The heat loss rate through the concrete slab in kilowatt Answer for part 3 .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY