Review. A steel wire and a copper wire, each of diameter 2.000 mm, are joined end to end. At 40.0°C, each has an unstretched length of 2.000 m. The wires are connected between two fixed supports 4.000 m apart on a tabletop. The steel wire extends from x = –2.000 m to x = 0, the copper wire extends from x = 0 to x = 2.000 m, and the tension is negligible. The temperature is then lowered to 20.0°C. Assume the average coefficient of linear expansion of steel is 11.0 × 10–6 (°C)–1 and that of copper is 17.0 × 10–6 (°C)–1. Take Youngs modulus for steel to be 20.0 × 1010 N/m2 and that for copper to be 11.0 × 1010 N/m2. At this lower temperature, find (a) the tension in the wire and (b) the x coordinate of the junction between the wires.
(a)
The tension in the wire.
Answer to Problem 19.72CP
The tension in the wire is
Explanation of Solution
Given Info: The diameter of both the wires is
Formula to calculate the radius of the wire is,
Here,
Substitute
Thus, the value of the radius is
The initial area of cross section of the steel wire is,
Substitute
Thus, the value of the initial area of cross section of the steel wire is
Substitute
Thus, the value of the initial area of cross section of the copper wire is
When the wire is stretched its length and its area of cross section both have changed.
Formula to calculate the new area of cross section of the steel wire is,
Substitute
Thus, the value of the final area of cross section of the steel wire is
Formula to calculate the new area of cross section of the copper wire is,
Substitute
Thus, the value of the final area of cross section of the copper wire is
Formula to calculate the final length of the steel wire under a tension
Here,
Formula to calculate the final length of the copper wire under a tension
Here,
Formula to calculate the tension in the composite wire is,
Substitute
Conclusion:
Thus, the tension in the wire is
(b)
The x-coordinate of the junction between the wires.
Answer to Problem 19.72CP
The final x-coordinate is
Explanation of Solution
Given Info: The diameter of both the wires is
Formula to calculate the final length of the steel wire under a tension
Here,
Substitute
Thus, the final length of the steel wire under a tension
Formula to find final x coordinate is,
Here,
Substitute
Conclusion:
Therefore, the final x-coordinate is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning