Concept explainers
The pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior pressure and the exterior pressure P0. Let’s call the gauge pressure Pg. When the cylinder is full, the mass of the gas in it is mi at a gauge pressure of Pgi. Assuming the temperature of the cylinder remains constant, show that the mass of the gas remaining in the cylinder when the pressure reading is Pgf is given by
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- In the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardAn ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of 3, (d) a factor of 1, or (e) a factor of 13? Using the same choices as in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a collision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- Consider a gas filling two connected chambers that are separated by a removable barrier (Fig. P20.68). The gas molecules on the left (red) are initially at a higher temperature than the ones on the right (blue). When the barrier between the two chambers is removed, the molecules begin to mix and move from one chamber to the other. a. Describe what happens to the temperature in the left chamber and in the right chamber as time goes on, once the barrier is open. Discuss in terms of the mixing of the molecules from each gas. b. Describe what happens to the most probable speed and average speed in the left chamber and in the right chamber as time goes on, once the barrier is open. Do they increase or decrease by the same factor? Explain. FIGURE P20.68 Problems 68 and 69.arrow_forward(a) In the deep space between galaxies, me density of atoms is as low as 106atoms/m3, and me temperature is a frigid 2.7 K. What is me pressure? (b) What volume (in m3) is occupied by 1 mol of gas? (c) If this volume is a cube, what is the length of its sides in kilometers?arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forward
- A cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forwardA gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forward
- n = 3.8 moles of an ideal gas are pumped into a chamber of volume V= (0.083 m³. The initial pressure of the gas is 1.01 × 10° Pa (about 1 atm). What is the initial temperature, in kelvin, of the gas? T = The pressure of the gas is increased ten times. Now what is the temperature, in kelvin, of the gas? T =arrow_forwardThe pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior pres- sure and the exterior pressure P. Let's call the gauge pres- sure P, When the cylinder is full, the mass of the gas in it is m, at a gauge pressure of P. Assuming the temperature of the cylinder remains constant, show that the mass of the gas remaining in the cylinder when the pressure reading is P is given by P + P = N. Р. + P.arrow_forwardFor an ideal gas in constant volume if you double the temperature ( T2= 2 T1), what is the new pressure ( P2=?)arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning