Concept explainers
Two metal bars are made of invar and a third bar is made of aluminum. At 0°C, each of the three bars is drilled with two holes 40.0 cm apart. Pins are put through the holes to assemble the bars into an equilateral triangle as in Figure P18.31. (a) First ignore the expansion of the invar. Find the angle between the invar bars as a function of Celsius temperature. (b) Is your answer accurate for negative as well as positive temperatures? (c) Is it accurate for 0°C? (d) Solve the problem again, including the expansion of the invar. Aluminum melts at 660°C and invar at 1 427°C. Assume the tabulated expansion coefficients are constant. What are (e) the greatest and (f) the smallest attainable angles between the invar bars?
Figure P18.31
(a)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
In the given diagram consider the right triangle that each invar bar makes with one half of the aluminum bar.
Then, the angle is,
Here,
Rearrange the above equation for
Conclusion:
Therefore, the angle between the invar bars as a function of Celsius temperature is
(b)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
If the temperature drops, the Celsius temperature becomes negative. The negative value of the Celsius temperature describes the contraction of the bars. So the answer is accurate for the negative temperature same as the positive temperature.
Conclusion:
Therefore, yes the answer is accurate for negative as well as positive temperature.
(c)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
The expression for the angle between the invar bars is,
Substitute
The value of each angle of the right angle triangle is
Conclusion:
Therefore, Yes, the answer is accurate at
(d)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
In the given diagram consider the right triangle that each invar bar makes with one half of the aluminum bar.
Then, the angle between invar bars and aluminum bar is,
Here,
Rearrange the above equation for
Conclusion:
Therefore, the angle between the invar bars and the aluminum bar as a function of Celsius temperature is
(e)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
The average coefficient of linear expansion of the aluminum is
The average coefficient of linear expansion of the invar is
The greatest angle is occur at
The equation for the angel between the invar bars is,
Substitute
Conclusion:
Therefore, the greatest attainable angle between the invar bars is
(f)
Answer to Problem 19.54AP
Explanation of Solution
Given info: The distance between two holes drilled at
The average coefficient of linear expansion of the aluminum is
The average coefficient of linear expansion of the invar is
The smallest angle is occur at
The equation for the angel between the invar bars is,
Substitute
Conclusion:
Therefore, the smallest attainable angle between the invar bars is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- A 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 52 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are P1 = 11 105 Pa and Vi = 8.0 cm3 while the final values are Pf = 1.0 105 Pa and Vf = 8.0 cm3. Friction between the projectile and the launch tube is negligible, (a) If the projectile is launched into a vacuum, what is the speed of the projectile as it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 105 Pa. what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down tile tube?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forward
- You do an experiment in which you transfer energy to 1.2 moles of a gas and measure it’s change in temperature. You make a graph of the data as shown. The y-axis is the amount of energy added and the x-axis is the temperature. A) how many moles per molecule does this substance have? B) is the substance most likely a monatomic gas, diatomic or another type of gas?arrow_forwardTwo small containers, each with a volume of 100 cm3, contain helium gas at 0°C and 1.00 atm pressure. The two containers are joined by a small open tube of negligible volume, allowing gas to flow from one container to the other. What common pressure will exist in the two containers if the temperature of one container is raised to 100°C while the other container is kept at 0°C?arrow_forwardA circular hole in an aluminum plate is 2.386 cm in diameter at 0.000°C. What is its diameter when the temperature of the plate is raised to 75.50°C? The linear expansion coefficient of aluminum is 23.00 x 10-6 /C°. Number Units Use correct number of significant digits; the tolerance is +/-2%arrow_forward
- The band in Figure P10.23 is stainless steel (coefficient of linear expansion 5 17.3 × 10–6 °C–1; Young’s modulus 5 18 × 1010 N/m2). It is essentially circular with an initial mean radius of 5.0 mm, a height of 4.0 mm, and a thickness of 0.50 mm. If the band just fits snugly over the tooth when heated to a temperature of 80°C, what is the tension in the band when it cools to a temperature of 37°C?arrow_forwardOn a spring morning (22°C) you fill your tires to a pressure of 2.15 atm. As you ride along, the tire heats up to 45°C from the friction on the road. What is the pressure in your tires now in units of atmospheres? R = 0.08206 L×atm/K×molarrow_forwardA hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0°C. It is completely filled with turpentine at 20.0°C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0°C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0°C? (c) If the combination with this amount of turpentine is then cooled back to 20.0°C, how far below the cylinder’s rim does the turpentine’s surface recede?arrow_forward
- On a chilly 10°C day, you quickly take a deep breath—all your lungs can hold, 4.0 L. The air warms to your body temperature of 37°C. If the air starts at a pressure of 1.0 atm, and you hold the volume of your lungs constant (a good approximation) and the number of molecules in your lungs stays constant aswell (also a good approximation), what is the increase in pressure inside your lungs?arrow_forwardTwo thermally insulated vessels are connected by a narrow tube lined with a valve that is initially closed as shown in Figure P20.15. One vessel of volume 16.8 L contains oxygen at a temperature of 300 K and a pressure of 1.75 atm. The other vessel of volume 22.4 L contains oxygen at a temperature of 450 K and a pressure of 2.25 atm. When the valve is opened, the gases in the two vessels mix and the temperature and pressure become uniform throughout, (a) What is the final temperature? (b) What is the final pressure?arrow_forwardA car tire has an inner radius of 45.46 cm has a low pressure of 195 kPa. The tire is recommended to be inflated to 248 kPa. At the low pressure the tire outer radius is 56.65 cm and fully inflated is 67.81 cm. The outside temperature is 17 0C. What is the mass of the air to inflate the tire? How many air molecules are added to properly inflate the tire?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning