Your father and your younger brother are confronted with the same puzzle. Your father’s garden sprayer and your brother’s water cannon both have tanks with a capacity of 5.00 L (Fig. P18.18). Your father puts a negligible amount of concentrated fertilizer into his tank. They both pour in 4.00 L of water and seal up their tanks, so the tanks also contain air at atmospheric pressure. Next, each uses a hand-operated pump to inject more air until the absolute pressure in the tank reaches 2.40 atm. Now each uses his device to spray out water—not air—until the stream becomes feeble, which it does when the pressure in the tank reaches 1.20 atm. To accomplish spraying out all the water, each finds he must pump up the tank three times. Here is the puzzle: most of the water sprays out after the second pumping. The first and the third pumping-up processes seem just as difficult as the second but result in a much smaller amount of water coming out. Account for this phenomenon. Figure P18.18
Your father and your younger brother are confronted with the same puzzle. Your father’s garden sprayer and your brother’s water cannon both have tanks with a capacity of 5.00 L (Fig. P18.18). Your father puts a negligible amount of concentrated fertilizer into his tank. They both pour in 4.00 L of water and seal up their tanks, so the tanks also contain air at atmospheric pressure. Next, each uses a hand-operated pump to inject more air until the absolute pressure in the tank reaches 2.40 atm. Now each uses his device to spray out water—not air—until the stream becomes feeble, which it does when the pressure in the tank reaches 1.20 atm. To accomplish spraying out all the water, each finds he must pump up the tank three times. Here is the puzzle: most of the water sprays out after the second pumping. The first and the third pumping-up processes seem just as difficult as the second but result in a much smaller amount of water coming out. Account for this phenomenon. Figure P18.18
Your father and your younger brother are confronted with the same puzzle. Your father’s garden sprayer and your brother’s water cannon both have tanks with a capacity of 5.00 L (Fig. P18.18). Your father puts a negligible amount of concentrated fertilizer into his tank. They both pour in 4.00 L of water and seal up their tanks, so the tanks also contain air at atmospheric pressure. Next, each uses a hand-operated pump to inject more air until the absolute pressure in the tank reaches 2.40 atm. Now each uses his device to spray out water—not air—until the stream becomes feeble, which it does when the pressure in the tank reaches 1.20 atm. To accomplish spraying out all the water, each finds he must pump up the tank three times. Here is the puzzle: most of the water sprays out after the second pumping. The first and the third pumping-up processes seem just as difficult as the second but result in a much smaller amount of water coming out. Account for this phenomenon.
14
Z
In figure, a closed surface with q=b=
0.4m/
C =
0.6m
if the left edge
of the closed surface at position X=a,
if E is non-uniform and is given by
€ = (3 + 2x²) ŷ N/C, calculate the
(3+2x²)
net electric flux leaving the closed
surface.
No chatgpt pls will upvote
suggest a reason ultrasound cleaning is better than cleaning by hand?
Chapter 19 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.