Concept explainers
(a)
Interpretation:
How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.
Concept introduction:
A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an
(b)
Interpretation:
How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.
Concept introduction:
A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.
(c)
Interpretation:
How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.
Concept introduction:
A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.
(d)
Interpretation:
How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.
Concept introduction:
A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 19 Solutions
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
- Calculate the reaction quotient for the reaction:NaOH (s) ⇌ Na+ (aq)+ OH- (aq) + 44.4 kJ [Na+] = 4.22 M [OH-] = 6.41 Marrow_forwardGiven the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forwardMatch each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forward
- Write the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forwardWrite the reaction quotient for: Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forwardWrite the equilibrium constant expression for the following system at equilibrium: I2 (g) ⇌ 2 I (g)arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618974122/9780618974122_smallCoverImage.gif)