EBK GET READY FOR ORGANIC CHEMISTRY
EBK GET READY FOR ORGANIC CHEMISTRY
2nd Edition
ISBN: 9780321830555
Author: KARTY
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 19.40P
Interpretation Introduction

(a)

Interpretation:

How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.

Concept introduction:

A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.

Interpretation Introduction

(b)

Interpretation:

How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.

Concept introduction:

A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.

Interpretation Introduction

(c)

Interpretation:

How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.

Concept introduction:

A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.

Interpretation Introduction

(d)

Interpretation:

How the given lithium dialkylcuprate reagent can be synthesized from an alkyl, alkenyl, alkynyl, or aryl halide is to be shown.

Concept introduction:

A lithium dialkylcuprate is synthesized from the corresponding alkyllithium reagent by treating it with copper(I) iodide, CuI. Because the metal-bonded C atom bears a partial negative charge on both the alkyllithium reagent and the lithium dialkylcuprate, umpolung technically does not occur in this reaction, but synthesizing a lithium dialkylcuprate from an alkyl halide does represent polarity reversal at the C atom. The C atom bonded to Cu should be bonded to halide. The carbon atom of C-X bond is electron poor whereas the carbon of C-Cu bond is electron rich.

Blurred answer
Students have asked these similar questions
Don't used hand raiting and don't used Ai solution
2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11
Complete the spectroscopy with structure

Chapter 19 Solutions

EBK GET READY FOR ORGANIC CHEMISTRY

Ch. 19 - Prob. 19.11PCh. 19 - Prob. 19.12PCh. 19 - Prob. 19.13PCh. 19 - Prob. 19.14PCh. 19 - Prob. 19.15PCh. 19 - Prob. 19.16PCh. 19 - Prob. 19.17PCh. 19 - Prob. 19.18PCh. 19 - Prob. 19.19PCh. 19 - Prob. 19.20PCh. 19 - Prob. 19.21PCh. 19 - Prob. 19.22PCh. 19 - Prob. 19.23PCh. 19 - Prob. 19.24PCh. 19 - Prob. 19.25PCh. 19 - Prob. 19.26PCh. 19 - Prob. 19.27PCh. 19 - Prob. 19.28PCh. 19 - Prob. 19.29PCh. 19 - Prob. 19.30PCh. 19 - Prob. 19.31PCh. 19 - Prob. 19.32PCh. 19 - Prob. 19.33PCh. 19 - Prob. 19.34PCh. 19 - Prob. 19.35PCh. 19 - Prob. 19.36PCh. 19 - Prob. 19.37PCh. 19 - Prob. 19.38PCh. 19 - Prob. 19.39PCh. 19 - Prob. 19.40PCh. 19 - Prob. 19.41PCh. 19 - Prob. 19.42PCh. 19 - Prob. 19.43PCh. 19 - Prob. 19.44PCh. 19 - Prob. 19.45PCh. 19 - Prob. 19.46PCh. 19 - Prob. 19.47PCh. 19 - Prob. 19.48PCh. 19 - Prob. 19.49PCh. 19 - Prob. 19.50PCh. 19 - Prob. 19.51PCh. 19 - Prob. 19.52PCh. 19 - Prob. 19.53PCh. 19 - Prob. 19.54PCh. 19 - Prob. 19.55PCh. 19 - Prob. 19.56PCh. 19 - Prob. 19.57PCh. 19 - Prob. 19.58PCh. 19 - Prob. 19.59PCh. 19 - Prob. 19.60PCh. 19 - Prob. 19.61PCh. 19 - Prob. 19.62PCh. 19 - Prob. 19.63PCh. 19 - Prob. 19.64PCh. 19 - Prob. 19.65PCh. 19 - Prob. 19.66PCh. 19 - Prob. 19.67PCh. 19 - Prob. 19.68PCh. 19 - Prob. 19.69PCh. 19 - Prob. 19.70PCh. 19 - Prob. 19.71PCh. 19 - Prob. 19.72PCh. 19 - Prob. 19.73PCh. 19 - Prob. 19.74PCh. 19 - Prob. 19.75PCh. 19 - Prob. 19.76PCh. 19 - Prob. 19.77PCh. 19 - Prob. 19.78PCh. 19 - Prob. 19.79PCh. 19 - Prob. 19.1YTCh. 19 - Prob. 19.2YTCh. 19 - Prob. 19.3YTCh. 19 - Prob. 19.4YTCh. 19 - Prob. 19.5YTCh. 19 - Prob. 19.6YTCh. 19 - Prob. 19.7YTCh. 19 - Prob. 19.8YTCh. 19 - Prob. 19.9YTCh. 19 - Prob. 19.10YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY