FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
16th Edition
ISBN: 9781323406038
Author: McMurry
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.31AP
Interpretation Introduction
Interpretation:
The acidic and basic amino acid in the active site in the given diagram has to be determined.
Concept Introduction:
The enzyme can acts as a catalyst due to following capabilities given below:
- It can bring substrates and catalytic sites together.
- It gives acidic, basic or other groups required for catalysis.
- For the reaction to occur, enzyme holds substrate at exact distance and in exact orientation.
- It lowers the energy barrier.
Acidic amino acids: The amino acids which can donate
Basic amino acids: The amino acids which can accept
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the standard change in Gibbs free energy, AGrxn, for the given reaction at 25.0 °C. Consult the table of
thermodynamic properties for standard Gibbs free energy of formation values.
NH,Cl(s) →NH; (aq) + C1 (aq)
AGrxn
-7.67
Correct Answer
Determine the concentration of NH+ (aq) if the change in Gibbs free energy, AGrxn, for the reaction is -9.27 kJ/mol.
6.49
[NH+]
Incorrect Answer
kJ/mol
M
What are some topics of interest that neurotoxicologists study? For example, toxin-induced seizures, brain death, and such along those lines?
Could you help me with the explanation of the answer to exercise 15, chapter 1 of Lehinger
Question
Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo. Identifique los dos carbonos quirales en la siguiente estructura. ¿Es este el(R,R)o el(S,S)¿isómero? Dibuja el otro isómero.
Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo.
Chapter 19 Solutions
FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
Ch. 19.1 - Prob. 19.1PCh. 19.1 - The enzyme LDH converts lactate to pyruvate. In...Ch. 19.2 - The cofactors NAD+, Cu2+, Zn2+, coenzyme A, FAD,...Ch. 19.3 - Describe the reactions that you would expect these...Ch. 19.3 - Prob. 19.5PCh. 19.3 - Prob. 19.6PCh. 19.3 - Prob. 19.7PCh. 19.3 - Prob. 19.8PCh. 19.4 - Prob. 19.9KCPCh. 19.5 - Prob. 19.10KCP
Ch. 19.5 - Prob. 19.11PCh. 19.5 - Prob. 19.12PCh. 19.6 - Prob. 19.13PCh. 19.6 - Prob. 19.14PCh. 19.7 - (a) L-Threonine is converted to L-isoleucine in a...Ch. 19.8 - AZT (zidovudine) inhibits the synthesis of the HIV...Ch. 19.8 - Prob. 19.3CIAPCh. 19.8 - Prob. 19.16PCh. 19.9 - Does the enzyme described in each of the following...Ch. 19.9 - Prob. 19.18PCh. 19.9 - Compare the structures of vitamin A and vitamin C....Ch. 19.9 - Prob. 19.20PCh. 19.9 - Prob. 19.21KCPCh. 19.9 - Prob. 19.22PCh. 19.9 - Prob. 19.4CIAPCh. 19.9 - Prob. 19.6CIAPCh. 19.9 - Prob. 19.7CIAPCh. 19.9 - Enzyme levels in blood are often elevated in...Ch. 19.9 - Prob. 19.9CIAPCh. 19.9 - Prob. 19.23PCh. 19 - Prob. 19.24UKCCh. 19 - Prob. 19.25UKCCh. 19 - Prob. 19.26UKCCh. 19 - Prob. 19.27UKCCh. 19 - Prob. 19.28APCh. 19 - Explain how the following mechanisms regulate...Ch. 19 - Prob. 19.30APCh. 19 - Prob. 19.31APCh. 19 - Prob. 19.32APCh. 19 - Prob. 19.33APCh. 19 - Prob. 19.34APCh. 19 - Prob. 19.35APCh. 19 - Prob. 19.36APCh. 19 - Prob. 19.37APCh. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - What features of enzymes make them so specific in...Ch. 19 - Describe in general terms how enzymes act as...Ch. 19 - Prob. 19.42APCh. 19 - Prob. 19.43APCh. 19 - Prob. 19.44APCh. 19 - Prob. 19.45APCh. 19 - Prob. 19.46APCh. 19 - Prob. 19.47APCh. 19 - What is the difference between the lock-and-key...Ch. 19 - Why is the induced-fit model a more likely model...Ch. 19 - Prob. 19.50APCh. 19 - Prob. 19.51APCh. 19 - How do you explain the observation that pepsin, a...Ch. 19 - Prob. 19.53APCh. 19 - Prob. 19.54APCh. 19 - Prob. 19.55APCh. 19 - Prob. 19.56APCh. 19 - Prob. 19.57APCh. 19 - The text discusses three forms of enzyme...Ch. 19 - Prob. 19.59APCh. 19 - Prob. 19.60APCh. 19 - Prob. 19.62APCh. 19 - Prob. 19.63APCh. 19 - The meat tenderizer used in cooking is primarily...Ch. 19 - Prob. 19.65APCh. 19 - Why do allosteric enzymes have two types of...Ch. 19 - Prob. 19.67APCh. 19 - Prob. 19.68APCh. 19 - Prob. 19.69APCh. 19 - Prob. 19.70APCh. 19 - Prob. 19.71APCh. 19 - Prob. 19.72APCh. 19 - Prob. 19.73APCh. 19 - Prob. 19.74APCh. 19 - Prob. 19.75APCh. 19 - Prob. 19.76APCh. 19 - Prob. 19.77APCh. 19 - Prob. 19.78APCh. 19 - Prob. 19.79APCh. 19 - Prob. 19.80CPCh. 19 - Prob. 19.81CPCh. 19 - Prob. 19.82CPCh. 19 - Prob. 19.83CPCh. 19 - Prob. 19.84CPCh. 19 - Prob. 19.85CPCh. 19 - Prob. 19.86CPCh. 19 - Prob. 19.87CPCh. 19 - Prob. 19.88GPCh. 19 - The ability to change a selected amino acid...Ch. 19 - Prob. 19.90GPCh. 19 - Prob. 19.91GP
Knowledge Booster
Similar questions
- The reaction A+B → C + D AG°' = -7.3 kcal/mol can be coupled with which of the following unfavorable reactions to drive it forward? A. EFG+HAG° = 5.6 kcal/mol. B. J+KZ+A AG° = 2.3 kcal/mol. C. P+RY+DAG° = 8.2 kcal/mol. D. C + T → V + W AG°' = -5.9 kcal/mol. E. AN→ Q+KAG°' = 4.3 kcal/mol.arrow_forwardWhat would be the toxicological endpoints for neurotoxicity?arrow_forwardWhat are "endpoints" in toxicology exactly? Please give an intuitive easy explanationarrow_forward
- Fura-2 Fluorescence (Arbitrary Unit) 4500 4000 3500 3000 2500 2000 1500 1000 500 [Ca2+]=2970nM, 25°C [Ca2+] 2970nM, 4°C [Ca2+]=0.9nM, 25°C [Ca2+] = 0.9nM, 4°C 0 260 280 300 340 360 380 400 420 440 Wavelength (nm) ← < The figure on the LHS shows the excitation spectra of Fura-2 (Em = 510 nm) in 2 solutions with two different Ca2+ ion concentration as indicated. Except for temperature, the setting for excitation & signal acquisition was identical.< ப a) The unit in Y-axis is arbitrary (unspecified). Why? < < b) Compare & contrast the excitation wavelength of the Isosbestic Point of Fura-2 at 25 °C & 4 °C. Give a possible reason for the discrepancy. < c) The fluorescence intensity at 25 °C & 4 °C are different. Explain why with the concept of electronic configuration. <arrow_forwarddraw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been included. Draw the structure for glycine, alanine, valine, isoleucine, methionine, proline, phenylalanine, tryptophan, serine, threonine, asparagine, glutamine, lysine, arginine, aspartic acid, glutamic acid, histidine, tyrosine, cysteinearrow_forwarddraw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been includedarrow_forward
- draw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been includedarrow_forwardDraw out the following peptide H-R-K-E-D at physiological pH (~7.4). Make sure toreference table 3.1 for pKa values.arrow_forwardThe table provides the standard reduction potential, E', for relevant half-cell reactions. Half-reaction E'° (V) Oxaloacetate² + 2H+ + 2e malate²- -0.166 Pyruvate + 2H+ + 2e → lactate -0.185 Acetaldehyde + 2H+ + 2e¯ →→→ ethanol -0.197 NAD+ + H+ + 2e--> NADH -0.320 NADP+ + H+ + 2e →→ NADPH Acetoacetate + 2H+ + 2e¯ - -0.324 B-hydroxybutyrate -0.346 Which of the reactions listed would proceed in the direction shown, under standard conditions, in the presence of the appropriate enzymes? Malate + NAD+ oxaloacetate + NADH + H+ Malate + pyruvate oxaloacetate + lactate Pyruvate + NADH + H+ lactate + NAD+ Pyruvate + p-hydroxybutyrate lactate + acetoacetate Acetaldehyde + succinate ethanol + fumerate Acetoacetate + NADH + H+ → B-hydroxybutyrate + NAD+arrow_forward
- Arrange the four structures in order from most reduced to most oxidized. Most reduced R-CH2-CH3 R-CH2-CH₂-OH R-CH,-CHO R-CH₂-COO Most oxidizedarrow_forwardfor each pair of biomolecules, identify the type of reaction (oxidation-reduction, hydrolysis, isomerization, group transfer, or nternal rearrangement) required to convert the first molecule to the second. In each case, indicate the general type of enzyme and cofactor(s) c reactants required, and any other products that would result. R-CH-CH-CH-C-S-COA A(n) A(n) A(n) A(n) Palmitoyl-CoA R-CH-CH=CH-C-S-CoA ° trans-A-Enoyl-CoA reaction converts palmitoyl-CoA to trans-A2-enoyl-CoA. This reaction requires and also produces Coo HN-C-H CH₂ CH₂ CH CH CH, CH, L-Leucine CH, CH, D-Leucine 8/6881 COO HÌNH: reaction converts L-leucine to D-leucine. This reaction is catalyzed by a(n) H-C-OH H-C-OH C=0 HO-C-H HO-C-H H-C-OH H-C-OH H-C-OH CH,OH Glucose H-C-OH CH,OH Fructose OH OH OH CH-C-CH₂ reaction converts glucose to fructose. This reaction is catalyzed by a(n) OH OH OPO I CH-C-CH H Glycerol Glycerol 3-phosphate H reaction converts glycerol to glycerol 3-phosphate. This reaction requires H,N- H,N H…arrow_forwardAfter adding a small amount of ATP labeled with radioactive phosphorus in the terminal position, [7-32P]ATP, to a yeast extract, a researcher finds about half of the 32P activity in P; within a few minutes, but the concentration of ATP remains unchanged. She then carries out the same experiment using ATP labeled with 32P in the central position, [ẞ-³2P]ATP, but the 32P does not appear in P; within such a short time. Which statements explain these results? Yeast cells reincorporate P; released from [ß-³2P]ATP into ATP more quickly than P¡ released from [y-³2P]ATP. Only the terminal (y) phosphorous atom acts as an electrophilic target for nucleophilic attack. The terminal (y) phosphoryl group undergoes a more rapid turnover than the central (B) phosphate group. Yeast cells maintain ATP levels by regulating the synthesis and breakdown of ATP. Correct Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning