CHEMISTRY 1111 LAB MANUAL >C<
1st Edition
ISBN: 9781307092097
Author: Chang
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.30QP
Interpretation Introduction
Interpretation: Final isotope should be determined.
Concept Introduction:
Radioactive decay:
- This process is the accompanied by the emission of one or more than one types of ionizing radiation like alpha ,beta, neutron, particles and gamma rays are disintegrate
- Radio active life-it refers to the amount of time taken by completion of half of its original isotope to decay. The rate of decay is a fixed rate called half-life.
- Half-life used in carbon dating-technique forthe age calculation of dead wood fossil, monument old tree etc.
- The half-life period s are determined by considering carbon dating technique.
- Carbon dating uses the half-life of carbon-14 to find the approximate age of an object. It’s may be 40.000 year old or younger.
- Radioactive isotope: An atom in a chemical compound is replaced by another atom, of the same chemical element. This is the principle behind the radioactive tracers.
Titanium is the example of radioactive isotope.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major
contributor in each case, or if they are equivalent (45)
(2)
-PH2
سمة
مد
A
J
то
گای ه
+0
Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone
required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one
molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01
number of moles= 0.400/277.15 = 0.00144 moles
2 x 0.00 144=0.00288 moves
arams of acetophenone = 0.00144 X 120.16 = 0.1739
0.1739x2=0.3469
grams of benzaldehyde = 0.00144X106.12=0.1539
0.1539x2 = 0.3069
Starting materials:
0.3469 Ox acetophenone,
0.3069 of benzaldehyde
3
1.
Answer the questions about the following reaction:
(a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this
reaction. Be sure to include any relevant stereochemistry in the product structure.
+
SK
F
Br
+
(b) In which solvent would this reaction proceed the fastest (Circle one)
Methanol
Acetone
(c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the
one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you
observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest
other products that are formed? Draw them in the box provided.
Chapter 19 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
Ch. 19.1 - Prob. 1PECh. 19.1 - Prob. 1RCCh. 19.2 - Prob. 1RCCh. 19.2 - Prob. 2PECh. 19.2 - What is the change in mass (in kg) for the...Ch. 19.3 - Prob. 1RCCh. 19.4 - Write a balanced equation for 46106Pd(,p)47109Ag.Ch. 19.5 - Prob. 1RCCh. 19 - Prob. 19.1QPCh. 19 - Prob. 19.2QP
Ch. 19 - Prob. 19.3QPCh. 19 - Prob. 19.4QPCh. 19 - Prob. 19.5QPCh. 19 - Prob. 19.6QPCh. 19 - Prob. 19.7QPCh. 19 - Prob. 19.8QPCh. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - Prob. 19.14QPCh. 19 - The radius of a uranium-235 nucleus is about 7.0 ...Ch. 19 - For each pair of isotopes listed, predict which...Ch. 19 - Prob. 19.17QPCh. 19 - In each pair of isotopes shown, indicate which one...Ch. 19 - Prob. 19.19QPCh. 19 - Prob. 19.20QPCh. 19 - Prob. 19.21QPCh. 19 - Prob. 19.22QPCh. 19 - Prob. 19.23QPCh. 19 - Prob. 19.24QPCh. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - Prob. 19.32QPCh. 19 - Prob. 19.33QPCh. 19 - Prob. 19.34QPCh. 19 - Prob. 19.35QPCh. 19 - Prob. 19.36QPCh. 19 - Prob. 19.37QPCh. 19 - Prob. 19.38QPCh. 19 - Prob. 19.39QPCh. 19 - Prob. 19.40QPCh. 19 - Prob. 19.41QPCh. 19 - Prob. 19.42QPCh. 19 - Prob. 19.43QPCh. 19 - Prob. 19.44QPCh. 19 - Prob. 19.45QPCh. 19 - Prob. 19.46QPCh. 19 - Prob. 19.47QPCh. 19 - Prob. 19.48QPCh. 19 - Prob. 19.49QPCh. 19 - Prob. 19.50QPCh. 19 - Prob. 19.51QPCh. 19 - Prob. 19.52QPCh. 19 - Prob. 19.53QPCh. 19 - Prob. 19.54QPCh. 19 - Prob. 19.55QPCh. 19 - Prob. 19.56QPCh. 19 - Prob. 19.57QPCh. 19 - Prob. 19.58QPCh. 19 - Prob. 19.59QPCh. 19 - Prob. 19.60QPCh. 19 - Prob. 19.61QPCh. 19 - Prob. 19.62QPCh. 19 - Prob. 19.63QPCh. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - Prob. 19.66QPCh. 19 - Prob. 19.67QPCh. 19 - Prob. 19.68QPCh. 19 - Prob. 19.69QPCh. 19 - Prob. 19.70QPCh. 19 - Prob. 19.71QPCh. 19 - Prob. 19.72QPCh. 19 - Prob. 19.73QPCh. 19 - Prob. 19.74QPCh. 19 - Prob. 19.75QPCh. 19 - Prob. 19.76QPCh. 19 - Prob. 19.77QPCh. 19 - Prob. 19.78QPCh. 19 - Prob. 19.79QPCh. 19 - Prob. 19.80QPCh. 19 - Prob. 19.81QPCh. 19 - Prob. 19.82QPCh. 19 - Prob. 19.83QPCh. 19 - Prob. 19.84QPCh. 19 - Prob. 19.85QPCh. 19 - Prob. 19.86QPCh. 19 - Prob. 19.87QPCh. 19 - Prob. 19.88QPCh. 19 - Prob. 19.89QPCh. 19 - Prob. 19.90QPCh. 19 - Prob. 19.91QPCh. 19 - Prob. 19.92QPCh. 19 - In each of the diagrams (a)(c), identify the...Ch. 19 - Prob. 19.94QPCh. 19 - Prob. 19.95QPCh. 19 - Prob. 19.96QPCh. 19 - Prob. 19.97QPCh. 19 - Prob. 19.98QPCh. 19 - Prob. 19.99QPCh. 19 - Prob. 19.100QPCh. 19 - Prob. 19.101QPCh. 19 - Prob. 19.102QPCh. 19 - Prob. 19.103QPCh. 19 - Prob. 19.104QPCh. 19 - The volume of an atoms nucleus is 1.33 1042 m3....Ch. 19 - Prob. 19.106QPCh. 19 - Prob. 19.107IMECh. 19 - Prob. 19.108IMECh. 19 - Prob. 19.109IMECh. 19 - Prob. 19.110IME
Knowledge Booster
Similar questions
- 3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forward
- Arrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forwardAnswers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forward
- Propose a synthesis pathway for the following transformations. b) c) d)arrow_forwardThe rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward8. Draw all the resonance forms for each of the following molecules or ions, and indicate the major contributor in each case, or if they are equivalent. (4.5 pts) (a) PH2 سمةarrow_forward
- 3. Assign absolute configuration (Rors) to each chirality center. a. H Nitz C. он b. 0 H-C. C H 7 C. ་-4 917-417 refs H 1つ ८ ડુ d. Но f. -2- 01 Ho -OH 2HNarrow_forwardHow many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red. Note for advanced students: In this question, any multiplet is counted as one signal. Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in top molecule For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in bottom moleculearrow_forwardIn the drawing area below, draw the major products of this organic reaction: 1. NaOH ? 2. CH3Br If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. No reaction. Click and drag to start drawing a structure. ☐ : A คarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning