OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305673939
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.29QP
Interpretation Introduction
Interpretation:
The Zinc-carbon heavy-duty battery should be explained in terms of output.
Concept introduction:
Cell potential
The
If the chemical reaction within the cell is attains equilibrium means, the reaction will be stopped so the cell potential (EMF) will be zero, there is no electron flow in the external circuit, therefore the battery has dead.
If limiting reagent is more means the reaction occurs, when it will be completely reacted.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Ch. 19.1 - Iodic acid, HIO3, can be prepared by reading...Ch. 19.1 - Balance the following equation using the...Ch. 19.2 - A voltaic cell consists of a silversilver ion...Ch. 19.2 - If you were to construct a wet cell and decided to...Ch. 19.3 - Prob. 19.4ECh. 19.3 - Prob. 19.5ECh. 19.4 - What is the maximum electrical work, that can be...Ch. 19.5 - Prob. 19.7ECh. 19.5 - Prob. 19.8ECh. 19.5 - Prob. 19.9E
Ch. 19.5 - Prob. 19.2CCCh. 19.6 - Prob. 19.10ECh. 19.6 - Prob. 19.11ECh. 19.6 - Prob. 19.12ECh. 19.7 - What is the cell potential of the following...Ch. 19.7 - What is the nickel(II)-ion concentration in the...Ch. 19.7 - Prob. 19.3CCCh. 19.8 - Prob. 19.4CCCh. 19.9 - Write the half-reactions for the electrolysis of...Ch. 19.10 - Prob. 19.16ECh. 19.11 - A constant electric current deposits 365 mg of...Ch. 19.11 - How many grams of oxygen are liberated by the...Ch. 19 - Describe the difference between a voltaic cell and...Ch. 19 - Prob. 19.2QPCh. 19 - What is the SI unit of electrical potential?Ch. 19 - Define the faraday.Ch. 19 - Why is it necessary to measure the voltage of a...Ch. 19 - Prob. 19.6QPCh. 19 - Prob. 19.7QPCh. 19 - Prob. 19.8QPCh. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - Prob. 19.14QPCh. 19 - Prob. 19.15QPCh. 19 - Prob. 19.16QPCh. 19 - Briefly explain why different products are...Ch. 19 - Prob. 19.18QPCh. 19 - Prob. 19.19QPCh. 19 - What half-reaction would be expected to occur at...Ch. 19 - Prob. 19.21QPCh. 19 - The voltaic cell is represented as...Ch. 19 - Electrochemical Cells I You have the following...Ch. 19 - Electrochemical Cells II Consider this cell...Ch. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - You have 1.0 M solutions of Al(NO3)3 and AgNO3...Ch. 19 - The zinc copper voltaic cell shown with this...Ch. 19 - The development of lightweight batteries is an...Ch. 19 - Prob. 19.35QPCh. 19 - Prob. 19.36QPCh. 19 - Balance the following oxidationreduction...Ch. 19 - Balance the following oxidationreduction...Ch. 19 - Balance the following oxidationreduction...Ch. 19 - Prob. 19.40QPCh. 19 - Balance the following oxidationreduction...Ch. 19 - Prob. 19.42QPCh. 19 - A voltaic cell is constructed from the following...Ch. 19 - Half-cells were made from a nickel rod dipping in...Ch. 19 - Zinc react spontaneously with silver ion....Ch. 19 - Prob. 19.46QPCh. 19 - A silver oxidezinc cell maintains a fairly...Ch. 19 - A mercury battery, used for hearing aids and...Ch. 19 - Write the cell notation for a voltaic cell with...Ch. 19 - Write the cell notation for a voltaic cell with...Ch. 19 - Give the notation for a voltaic cell constructed...Ch. 19 - A voltaic cell has an iron rod in 0.30 M iron(III)...Ch. 19 - Prob. 19.53QPCh. 19 - Write the overall cell reaction for the following...Ch. 19 - Consider the voltaic cell...Ch. 19 - Consider the voltaic cell...Ch. 19 - A voltaic cell whose cell reaction is...Ch. 19 - A particular voltaic cell operates on the reaction...Ch. 19 - What is the maximum work you can obtain from 30.0...Ch. 19 - Calculate the maximum work available from 50.0 g...Ch. 19 - Order the following oxidizing agents by increasing...Ch. 19 - Order the following oxidizing agents by increasing...Ch. 19 - Consider the reducing agents Cu+(aq), Zn(s), and...Ch. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - Answer the following questions by referring to...Ch. 19 - Prob. 19.67QPCh. 19 - Dichromate ion, Cr2O72, is added to an acidic...Ch. 19 - Calculate the standard cell potential of the...Ch. 19 - Calculate the standard cell potential of the...Ch. 19 - What is the standard cell potential you would...Ch. 19 - What is the standard cell potential you would...Ch. 19 - Calculate the standard free-energy change at 25C...Ch. 19 - Calculate the standard free-energy change at 25C...Ch. 19 - What is G for the following reaction?...Ch. 19 - Prob. 19.76QPCh. 19 - Calculate the standard cell potential at 25C for...Ch. 19 - Calculate the standard cell potential at 25C for...Ch. 19 - Prob. 19.79QPCh. 19 - Calculate the standard cell potential of the cell...Ch. 19 - Calculate the equilibrium constant K for the...Ch. 19 - Calculate the equilibrium constant K for the...Ch. 19 - Copper(I) ion can act as both an oxidizing agent...Ch. 19 - Prob. 19.84QPCh. 19 - Calculate the cell potential of the following cell...Ch. 19 - What is the cell potential of the following cell...Ch. 19 - Calculate the cell potential of a cell operating...Ch. 19 - Calculate the cell potential of a cell operating...Ch. 19 - The voltaic cell Cd(s)Cd2+(aq)Ni2+(1.0M)Ni(s) has...Ch. 19 - The cell potential of the following cell at 25C is...Ch. 19 - What are the half-reactions in the electrolysis of...Ch. 19 - What are the half-reactions in the electrolysis of...Ch. 19 - Describe what you expect to happen when the...Ch. 19 - Prob. 19.94QPCh. 19 - In the commercial preparation of aluminum,...Ch. 19 - Chlorine, Cl2, is produced commercially by the...Ch. 19 - When molten lithium chloride, LiCl, is...Ch. 19 - How many grams of cadmium are deposited from an...Ch. 19 - Some metals, such as iron, can be oxidized to more...Ch. 19 - Some metals, such as thallium, can be oxidized to...Ch. 19 - Balance the following skeleton equations. The...Ch. 19 - Prob. 19.102QPCh. 19 - Prob. 19.103QPCh. 19 - Prob. 19.104QPCh. 19 - Prob. 19.105QPCh. 19 - Give the notation for a voltaic cell whose overall...Ch. 19 - Prob. 19.107QPCh. 19 - Use electrode potentials to answer the following...Ch. 19 - Prob. 19.109QPCh. 19 - Prob. 19.110QPCh. 19 - a Calculate the equilibrium constant for the...Ch. 19 - Prob. 19.112QPCh. 19 - How many faradays are required for each of the...Ch. 19 - Prob. 19.114QPCh. 19 - In an analytical determination of arsenic, a...Ch. 19 - Prob. 19.116QPCh. 19 - Prob. 19.117QPCh. 19 - Prob. 19.118QPCh. 19 - A solution of copper(II) sulfate is electrolyzed...Ch. 19 - A potassium chloride solution is electrolyzed by...Ch. 19 - A constant current of 1.40 amp is passed through...Ch. 19 - A constant current of 1.25 amp is passed through...Ch. 19 - An aqueous solution of an unknown salt of gold is...Ch. 19 - An aqueous solution of an unknown salt of vanadium...Ch. 19 - An electrochemical cell is made by placing a zinc...Ch. 19 - An electrochemical cell is made by placing an iron...Ch. 19 - Prob. 19.127QPCh. 19 - a Calculate G for the following cell reaction:...Ch. 19 - Prob. 19.129QPCh. 19 - Prob. 19.130QPCh. 19 - A voltaic cell is constructed from a half-cell in...Ch. 19 - Prob. 19.132QPCh. 19 - Prob. 19.133QPCh. 19 - Order the following oxidizing agents by increasing...Ch. 19 - What is the cell potential (Ecell) of a...Ch. 19 - Prob. 19.136QPCh. 19 - Which of the following reactions occur...Ch. 19 - Prob. 19.138QPCh. 19 - The following two half-reactions arc involved in a...Ch. 19 - Prob. 19.140QPCh. 19 - Prob. 19.141QPCh. 19 - A 1.0-L sample of 1.0 M HCl solution has a 10.0 A...Ch. 19 - Consider the following cell running under standard...Ch. 19 - Prob. 19.144QPCh. 19 - Prob. 19.145QPCh. 19 - Prob. 19.146QPCh. 19 - Consider the following cell reaction at 25C....Ch. 19 - Consider the following cell reaction at 25C....Ch. 19 - Prob. 19.149QPCh. 19 - Prob. 19.150QPCh. 19 - Prob. 19.151QPCh. 19 - Prob. 19.152QPCh. 19 - An electrode is prepared by dipping a silver strip...Ch. 19 - An electrode is prepared from liquid mercury in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- You have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forward
- Use the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardGive the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forwardA potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forward
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardThe cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forwardA voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forward
- A half-cell that consists of a copper wire in a 1.00 M Cu(NO3)2 solution is connected by a salt bridge to a solution that is 1.00 M in both Pu3+ and Pu4+, and contains an inert metal electrode. The voltage of the cell is 0.642 V, with the copper as the negative electrode. (a) Write the half-reactions and the overall equation for the spontaneous chemical reaction. (b) Use the standard potential of the copper half-reaction, with the voltage of the cell, to calculate the standard reduction potential for the plutonium half-reaction.arrow_forwardCalculate the standard cell potential of the cell corresponding to the oxidation of oxalic acid, H2C2O4, by permanganate ion. MnO4. 5H2C2O4(aq)+2MnO4(aq)+6H+(aq)10CO2(g)+2Mn2+(aq)+8H2O(l) See Appendix C for free energies of formation: Gf for H2C2O4(aq) is 698 kJ.arrow_forwardAn electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY