Spontaneity of given reaction should be explained, when addition of give buffer in to the cell. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes of voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Nernst equation: The relationship between standard cell potential and cell potential at non standard conditions and the reaction quotient are given by Nernst equation it is, E cell = E° cell - 0.0592 n logQ Where, E cell is cell potential E° cell is standard cell potential Q is reaction quotient n isnumber of electrons pH : Ph of the solution is nothing but the concentration of Hydrogen ion in given solution in given condition and it is given by negative logarithm of base ten Hydrogen ion concentration. pH=-log[H + ]
Spontaneity of given reaction should be explained, when addition of give buffer in to the cell. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes of voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Nernst equation: The relationship between standard cell potential and cell potential at non standard conditions and the reaction quotient are given by Nernst equation it is, E cell = E° cell - 0.0592 n logQ Where, E cell is cell potential E° cell is standard cell potential Q is reaction quotient n isnumber of electrons pH : Ph of the solution is nothing but the concentration of Hydrogen ion in given solution in given condition and it is given by negative logarithm of base ten Hydrogen ion concentration. pH=-log[H + ]
Solution Summary: The author explains that the Spontaneity of given reaction should be explained when adding a buffer in to the cell.
The relationship between standard cell potential and cell potential at non standard conditions and the reaction quotient are given by Nernst equation it is,
Ph of the solution is nothing but the concentration of Hydrogen ion in given solution in given condition and it is given by negative logarithm of base ten Hydrogen ion concentration.
What impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attached
Given that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield.
Results are attached form experiment
5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that:
(from Box 5.1, pg. 88 of your text):
Temp = 18°C
Salinity = 35 ppt
Density = 1025 kg/m3
Oxygen concentration measured in bulk water = 263.84 mmol/m3
Wind speed = 7.4 m/s
Oxygen is observed to be about 10% initially supersaturated
What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?
Chapter 19 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell