Concept explainers
An automobile wheel-and-tire assembly of total weight 47 lb is attached to a mounting plate of negligible weight that is suspended from a steel wire. The torsional spring constant of the wire is known to be K = 0.40 lb·in/rad. The wheel is rotated through 90° about the vertical and then released. Knowing that the period of oscillation is observed to be 30 s, determine the centroidal mass moment of inertia and the centroidal radius of gyration of the wheel-and-tire assembly.
Fig. P19.159
The centroidal mass moment of inertia
Answer to Problem 19.159RP
The centroidal mass moment of inertia
Explanation of Solution
Given information:
The total weight of the automobile (W) is 47 lb.
The total spring constant of wire (K) is
The wheel rotates at an angle
The time period of oscillation
The acceleration due to gravity (g) is
Calculation:
Calculate the frequency of oscillation (f) using the formula:
Substitute 30 s for
Calculate the natural circular frequency of oscillation
Substitute 0.03333 Hz for f.
When an angular displacement of
Take moment for external forces as follows:
Here,
Restoring couple acts on the system due to the angular displacement of
Take moment for effective forces as follows;
Here,
Equate the moment for external and effective forces in the system using the relation:
The expression for the general differential equation of motion as follows:
Find the expression for the natural circular frequency of vibration:
Compare the differential equations (1) and (2).
Substitute
The expression for the centroidal mass moment of inertia as follows:
Here, m is the mass of the wheel-and-tire assembly and
Calculate the mass of the wheel-and-tire assembly (m) using the formula:
Substitute 47 lb for W and
Substitute
Therefore, the centroidal mass moment of inertia
Want to see more full solutions like this?
Chapter 19 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- A lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forwardKnowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forward
- Find the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forwardNo chatgpt plsarrow_forwardSolve for the reaction of all the forces Don't use artificial intelligence or screen shot it, only expert should solvearrow_forward
- No chatgpt plsarrow_forwardA six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY