Concept explainers
The crude-oil pumping rig shown is driven at 20 rpm. The inside diameter of the well pipe is 2 in., and the diameter of the pump rod is 0.75 in. The length of the pump rod and the length of the column of oil lifted during the stroke are essentially the same, and equal to 6000 ft. During the downward stroke, a valve at the lower end of the pump rod opens to let a quantity of oil into the well pipe, and the column of oil is then lifted to obtain a discharge into the connecting pipeline. Thus, the amount of oil pumped in a given time depends upon the stroke of the lower end of the pump rod. Knowing that the upper end of the rod at D is essentially sinusoidal with a stroke of 45 in. and the specific weight of crude oil is 56.2 lb/ft3, determine (a) the output of the well in ft3/min if the shaft is rigid, (b) the output of the well in ft3/min if the stiffness of the rod is 2210 N/m, the equivalent mass of the oil and shaft is 290 kg, and damping is negligible.
Fig. P19.108
(a)
Find the output of the well
Answer to Problem 19.108P
The output of the well
Explanation of Solution
Given information:
The forced circular frequency
The diameter of the well pipe
The diameter of the pump rod
The stroke of the upper end of the rod
The specific weight of the crude oil
Calculation:
The periodic force frequency is the frequency at which the crude oil is pumped. The speed of the crude oil pump is 20 rpm.
Calculate the periodic force frequency
Here, N is the speed of the pump.
Substitute
The oil flows in the pipe between the pump rod and pipe walls. The diameter of the well pipe is 2 in. and that of the pump rod is 0.75 inch. Thus, the oil flow area is the annular area between the pump rod area and pipe area.
Calculate the oil flow area
Substitute
The system is analogous to the forced vibration system where the vibration is due to simple harmonic motion of the support. The stroke of the lower end of the pump is proportional to the amplitude of the vibration motion.
The expression for the relation between stroke of the pump and the amplitude of vibration as follows:
Here, s is the stroke of the pump and
Calculate the volume of the oil
Substitute
The system is analogous to the forced vibration system where the vibration is due to simple harmonic motion of the support. In the system, the vibration is due to the sinusoidal displacement of the upper end of the rod. The stroke of the sinusoidal motion of the upper end of the rod is 45 inch.
Calculate the magnitude of the static deflection
Substitute
For rigid shaft:
The expression for the amplitude of the forced vibration
Here,
For the rigid shaft, the spring constant is infinite and thus the natural frequency of the rod is infinite. The equation (3) implies that the resulting amplitude of forced vibration, when the natural frequency is infinite, is the amplitude of the forced vibration
Calculate the stroke (s) using the relation:
Substitute
Calculate the volume of the oil
Substitute
The speed of the pump is
Calculate the total volume displaced
Substitute
Therefore, the output of the well
(b)
Find the output of the well
Answer to Problem 19.108P
The output of the well
Explanation of Solution
Given information:
The forced circular frequency
The diameter of the well pipe
The diameter of the pump rod
The stroke of the upper end of the rod
The specific weight of the crude oil
The stiffness of the rod (k) is
The mass of the oil (m) is
Calculation:
Flexible shaft of stiffness:
Calculate the natural circular frequency
Substitute
Calculate the amplitude of forced vibration
Substitute
Calculate the stroke (s) using the relation:
Substitute
Calculate the volume of the oil
Substitute
Calculate the total volume displaced
Substitute
Therefore, the output of the well
Want to see more full solutions like this?
Chapter 19 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY