Test the following series for convergence or divergence. Decide for yourself which test is easiest to use, but don’t forget the preliminary test. Use the facts stated above when they apply.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Mathematical Methods in the Physical Sciences
Additional Math Textbook Solutions
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
Thinking Mathematically (6th Edition)
A First Course in Probability (10th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- 3. Let A (-1, 1-1) for even n, and A, -(+) for odd n. Derive lim sup A, and lim inf Aarrow_forward1. Let 2 (a, b, c} be the sample space. the power sot of O (c) Show that F= {0, 2, {a, b}, {b, c}, {b}} is not a σ-field. Add some elements to make it a σ-field.arrow_forward5. State without proof the uniqueness theorem of a probability function (arrow_forward
- 2. (a) Define lim sup A,. Explain when an individual element of 2 lies in A* = lim sup A. Answer the same for A, = lim inf A,,.arrow_forward(c) Show that the intersection of any number of a-fields is a g-field. Redefine (A) using this fact.arrow_forward(b) For a given sequence A, of subsets of 92, explain when we say that A,, has a limit.arrow_forward
- 1. Let 2 (a, b, c} be the sample space. (b) Construct a a-field containing A = {a, b} and B = {b, c}.arrow_forward2= 1. Let 2 {a, b, c} be the sample space. (a) Write down the power set of 2.arrow_forwardTheorem: show that XCH) = M(E) M" (6) E + t Mcfic S a Solution of ODE -9CA)- x = ACE) x + g (t) + X (E) - Earrow_forward
- Exercise 1 Given are the following planes: plane 1: 3x4y+z = 1 0 plane 2: (s, t) = ( 2 ) + ( -2 5 s+ 0 ( 3 t 2 -2 a) Find for both planes the Hessian normal form and for plane 1 in addition the parameter form. b) Use the cross product of the two normal vectors to show that the planes intersect in a line. c) Calculate the intersection line. d) Calculate the intersection angle of the planes. Make a sketch to indicate which angle you are calculating.arrow_forward1. Let 2 (a, b, c)} be the sample space. (a) Write down the power set of 2. (b) Construct a σ-field containing A = {a, b} and B = {b, c}. (c) Show that F= {0, 2, {a, b}, {b, c}, {b}} is not a σ-field. Add some elements to make it a σ-field..arrow_forward13. Let (, F, P) be a probability space and X a function from 2 to R. Explain when X is a random variable.arrow_forward