Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.3, Problem 18.118P
The propeller of an air boat rotates at 1800 rpm. The moment of inertia about its spin axis is 4 slug·ft2. Knowing the boat makes a circular turn of radius 40 ft at a speed of 40 mi/h, determine the moment exerted on the boat due to the gyroscopic effect of the propeller.
Fig. P18.118
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
0.08 m,x
0.225
0.75
0.08 m.
O:
1.08
b'
0.108
(c) Couple polygon.
(d) Force polygon.
Fig. 21.11
Page 18 of 19
Balarcing of Rotating Masses
H.W. 2:
A shaft carries five masses A, B, C, D and E which revolve at the same
radius in planes which are equidistant from one another. The magnitude of the
masses in planes A. Cand Dare 50 kg. 40 kg and 80 kg respectively. The angle
between A and C is 90° and that between C and D is 135°, Determine the
magnitude of the masses in planes B and E and their positions to put the shaft in
complete rotating balance.
19
Page 19 uf 19
II
I need the answer as soon as possible
The flywheel of an automobile engine, which is rigidly attached to the crankshaft, is equivalent to a 400-mm-diameter, 15-mm-thick steel plate. Determine the magnitude of the couple exerted by the flywheel on the horizontal crankshaft as the automobile travels around an unbanked curve of 200-m radius at a speed of 90 km/h, with the flywheel rotating at 2700 rpm. Assume the automobile to have (a) a rear-wheel drive with the engine mounted longitudinally, (b) a front-wheel drive with the engine mounted transversely. (Density of steel = 7860 kg/m3.)
Chapter 18 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - A homogeneous disk of mass m = 8 kg rotates at the...Ch. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Determine the angular momentum HO of the disk of...
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.61PCh. 18.2 - Determine the rate of change HD of the angular...Ch. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - A model of a type of crusher is shown. A disk of...Ch. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - The propeller of an air boat rotates at 1800 rpm....Ch. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - A homogeneous rectangular plate of mass m and...Ch. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A four-bladed airplane propeller has a mass of 160 kg and a radius of gyration of 800 mm. Knowing that the propeller rotates at 1600 rpm as the airplane is traveling in a circular path of 600-m radius at 540 km/h, determine the magnitude of the couple exerted by the propeller on its shaft due to the rotation of the airplane.arrow_forward5) In ice figure skating, a couple execute a “top” (see picture). The centre of mass of the woman (58 kg) is situated 1.3 m from the axis of rotation which is vertical and passes through the centre of mass of the man (85 kg). They are spinning at a constant angular velocity equal to 3.1415 rad/s and the man and woman have moments of inertia, about their own centres of mass, equal to 1.6 and 2.5 kg.m2 respectively. Then the woman grabs the neck of the man. At this point, her moment of inertia decreases to 1.4 kg.m2 and her body centre of gravity is 0.9 m from the axis of rotation. Determine the new angular velocity. Hints: This is a conservation of angular momentum problem, and needs the parallel axis theorem to determine moments of inertia about the axis of rotation. The skaters are moving as one body with one angular velocity, but they each have their own moments of inertia given relative to their own CoMs. For the man, that’s fine…the axis they’re rotating about passes through his…arrow_forwardIn the helicopter shown; a vertical tail propeller is used to pre- vent rotation of the cab as the speed of the main blades is changed. Assuming that the tail propeller is not operating determine the final angular velocity of the cab after the speed of the main blades has been changed from I80 to 240 rpm. (The speed of the main blades is measured relative to the cab, and the cab has a centroidal moment of inertia of 650 lb.ft.s2. Each of the four main blades is assumed to be a slender rod 14 ft weighing 55 lb.)arrow_forward
- The flywheel of a small punch rotates at 300 rpm. It is known that 1800 ft.1b of work must be done each time a hole is punched. It is desired that the speed of the flywheel after one punching be not less than 90 percent of the original speed of 300 rpm. (a ) Determine the required moment of inertia of the flywheel. (b) If a constant 25-1b.ft couple is applied to the shaft of the flywheel, determine the number of revolutions that must occur between each punching, knowing that the initial velocity is to be 300 rpm at the start of each punching.arrow_forwardShow that, when a rigid body rotates about a fixed axis through O perpendicular to the body, the system of the momenta of its particles is equivalent to a single vector of magnitude mrw, perpendicular to the line OG, and applied to a point P on this line, called the center of percussion, at a distance GP=k2/r from the mass center of the body.arrow_forwardA shaft with 3 meters span between two bearings carries two masses of 120 g and 100 g acting at the extremities of the arms 40 mm and 50 mm long respectively. The planes in which these masses rotate are 1.5 m and 2.5 m respectively from the left end bearing supporting the shaft. The angle between the arms is 120°. The speed of rotation of the shaft is 200 r.p.m. If the masses are balanced by two counter-masses rotating with the shaft acting at radii of 0.3 m and placed at 0.5 m from each bearing centers, estimate the magnitude of the two balance masses and their orientation with respect to the X-axis, i.e. mass of 120 g.arrow_forward
- A 5.32-kg disk A of radius 0.445 m initially rotating counter-clockwise at 436 rev/min is engaged with a 6.72-kg disk B of radius 0.275 m initially rotating clockwise at 528 rev/min, where the moment of inertia of a disk is given as I = ½ mi?. Determine their combined angular speed (in rpm) and direction of rotation after the meshing of the two disks. Remember to show clearly the equations that you use!!'arrow_forwardThe 100-kg projectile shown has a radius of gyration of 100 mm about its axis of symmetry Gx and a radius of gyration of 250 mm about the transverse axis Gy. Its angular velocity v can be resolved into two components; one component, directed along Gx, measures the rate of spin of the projectile, while the other component, directed along GD, measures its rate of precession. Knowing that θ= 6° and that the angular momentum of the projectile about its mass center G is determine (a) the rate of spin, (b) ) the rate of precession.arrow_forward1. The turbine rotor of a ship has a mass of 8 tones and a radius of gyration 0.6 m. It rotates at 1800 r.p.m. clockwise, when looking from the stern. Determine the gyroscopic couple, if the ship travels at 100 km/hr and steer to the left in a curve of 75 m radius.arrow_forward
- A 1.6-kg tube AB can slide freely on rod DE which in turn can rotate freely in a horizontal plane. Initially the assembly is rotating with an angular velocity of magnitude w = 5 rad/s and the tube is held in position by a cord. The moment of inertia of the rod and bracket about the vertical axis of rotation is 0.30 kg.m2 and the centroidal moment of inertia of the tube about a vertical axis is 0.0025 kg.m2If the cord suddenly breaks, determine (a) the angular velocity of the assembly after the tube has moved to end E, (b) the energy lost during the plastic impact at E.arrow_forwardA ring of mass m =1 kg and radius R = 1m is attached to a vertical shaft by means of a frictionless pin. Coordinates xyz are fixed to the ring as shown and the frictionless pin at A is aligned with the x-axis. The vertical shaft precesses about the Z-axis with constant angular velocity 2 = 1 rad/s. (a) At a particular moment when 0 = 30° and = 4 rad/s, find the value of Ö . This comes from a sum of the moments about the x-axis. Do not neglect gravity. (b) Find the torque or moment necessary that must be applied about the vertical shaft in order to keep it turning at a constant rate of N = 1 rad/s. Ring R XG A 1 Ixx = lyy =mR? G Iz = mR?arrow_forward7. The rotor of a turbine installed in a boat with its axis along the longitudinal axis of the boat makes 1500 rp.m. clockwise when viewed from the stern. The rotor has a mass of 750 kg and a radius of gyration of 300 mm. If at an instant, the boat pitches in the longitudinal vertical plane so that the bow rises from the horizontal plane with an angular velocity of I rad/s, determine the torque acting on the [Ans. 10.6 kN-m] boat and the direction in which it tends to turn the boat at the instant.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License