EBK INTRODUCTORY CHEMISTRY
EBK INTRODUCTORY CHEMISTRY
8th Edition
ISBN: 8220100480485
Author: DECOSTE
Publisher: CENGAGE L
Question
Book Icon
Chapter 18.2, Problem 18.2SC
Interpretation Introduction

(a)

Interpretation:

The oxidation state of all atoms in SO3 should be assigned.

Concept Introduction:

The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.

Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.

Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.

Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.

Therefore, transfer of electrons refers to the oxidation state.

Interpretation Introduction

(b)

Interpretation:

The oxidation state of all atoms in SO42 should be assigned.

Concept Introduction:

The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.

Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.

Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.

Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.

Therefore, transfer of electrons refers to the oxidation state.

Interpretation Introduction

(c)

Interpretation:

The oxidation state of all atoms in N2O5 should be assigned.

Concept Introduction:

The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.

Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.

Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.

Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.

Therefore, transfer of electrons refers to the oxidation state.

Interpretation Introduction

(d)

Interpretation:

The oxidation state of all atoms in PF3 should be assigned.

Concept Introduction:

The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.

Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.

Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.

Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.

Therefore, transfer of electrons refers to the oxidation state.

Interpretation Introduction

(d)

Interpretation:

The oxidation state of all atoms in C2H6 should be assigned.

Concept Introduction:

The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.

Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.

Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.

Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.

Therefore, transfer of electrons refers to the oxidation state.

Blurred answer
Students have asked these similar questions
(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Edit
Small changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.
? The best reagent to achieve the transformation shown is: A Na/NH3 B KCN C HCN CN D H2BCN ய E Transformation is not possible in one step

Chapter 18 Solutions

EBK INTRODUCTORY CHEMISTRY

Ch. 18 - Prob. 5ALQCh. 18 - Prob. 6ALQCh. 18 - In balancing oxidation-reduction equations, why is...Ch. 18 - What does it mean for a substance to be oxidized?...Ch. 18 - Label the following parts of the galvanic cell....Ch. 18 - Prob. 1QAPCh. 18 - Prob. 2QAPCh. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - Prob. 6QAPCh. 18 - Prob. 7QAPCh. 18 - Prob. 8QAPCh. 18 - Explain why, although it is not an ionic compound,...Ch. 18 - Prob. 10QAPCh. 18 - Prob. 11QAPCh. 18 - Prob. 12QAPCh. 18 - Prob. 13QAPCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 15QAPCh. 18 - Prob. 16QAPCh. 18 - . What is the oxidation state of chlorine in each...Ch. 18 - . What is the oxidation state of manganese in each...Ch. 18 - Prob. 19QAPCh. 18 - Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 21QAPCh. 18 - Prob. 22QAPCh. 18 - Prob. 23QAPCh. 18 - Prob. 24QAPCh. 18 - Prob. 25QAPCh. 18 - Prob. 26QAPCh. 18 - . Does an oxidizing agent donate or accept...Ch. 18 - Prob. 28QAPCh. 18 - Prob. 29QAPCh. 18 - Prob. 30QAPCh. 18 - Prob. 31QAPCh. 18 - Prob. 32QAPCh. 18 - Prob. 33QAPCh. 18 - Prob. 34QAPCh. 18 - Prob. 35QAPCh. 18 - Prob. 36QAPCh. 18 - Prob. 37QAPCh. 18 - Prob. 38QAPCh. 18 - Prob. 39QAPCh. 18 - Prob. 40QAPCh. 18 - Prob. 41QAPCh. 18 - Prob. 42QAPCh. 18 - Prob. 43QAPCh. 18 - Prob. 44QAPCh. 18 - . Balance each of the following...Ch. 18 - Prob. 46QAPCh. 18 - . Iodide ion, I- , is one of the most easily...Ch. 18 - Prob. 48QAPCh. 18 - Prob. 49QAPCh. 18 - Prob. 50QAPCh. 18 - . In which direction do electrons flow in a...Ch. 18 - Prob. 52QAPCh. 18 - . Consider the oxidation-reduction reaction...Ch. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 55QAPCh. 18 - Prob. 56QAPCh. 18 - Prob. 57QAPCh. 18 - Prob. 58QAPCh. 18 - Prob. 59QAPCh. 18 - Prob. 60QAPCh. 18 - Prob. 61QAPCh. 18 - Prob. 62QAPCh. 18 - . Although aluminum is one of the most abundant...Ch. 18 - . The “Chemistry in Focus” segment Water-Powered...Ch. 18 - Prob. 65APCh. 18 - Prob. 66APCh. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - Prob. 69APCh. 18 - Prob. 70APCh. 18 - Prob. 71APCh. 18 - Prob. 72APCh. 18 - Prob. 73APCh. 18 - . To obtain useful electrical energy from an...Ch. 18 - Prob. 75APCh. 18 - Prob. 76APCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - . The “pressure” on electrons to flow from one...Ch. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - Prob. 83APCh. 18 - . For each of the following unbalanced...Ch. 18 - Prob. 85APCh. 18 - Prob. 86APCh. 18 - Prob. 87APCh. 18 - . Balance each of the following...Ch. 18 - . Balance each of the following...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . Assign oxidation sates to all of the atoms in...Ch. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 94APCh. 18 - Prob. 95APCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 97APCh. 18 - . In each of the following reactions, identify...Ch. 18 - . Balance each of the following half-reactions....Ch. 18 - Prob. 100APCh. 18 - Prob. 101APCh. 18 - Prob. 102APCh. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 104APCh. 18 - Prob. 105CP
Knowledge Booster
Background pattern image
Recommended textbooks for you
  • Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co