(a)
Interpretation:
The given
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.
Answer to Problem 48QAP
Explanation of Solution
The given reaction is as follows:
The above reaction can be separated as follows:
And,
The reaction (1) can be balanced by adding 2 electrons to the right side of the reaction arrow:
Now, to balance reaction (2), first add 1 water molecule to the right thus,
Now, second step is to balance the hydrogen atoms, 1 hydrogen ion is added to left thus,
Last step is to balance the charge thus, 1 electron is added to left as follows:
Net reaction can be obtained by adding reaction (3) and (4) thus,
Thus, the balanced chemical reaction is as follows:
(b)
Interpretation:
The given oxidation-reduction reaction should be balanced using the half-reaction method.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.
Answer to Problem 48QAP
Explanation of Solution
The given reaction is as follows:
First separate the above reaction to two half reactions as follows:
And,
To balance reaction (1) add 2 electrons to the right thus,
Reaction (2) can be balanced by adding 1 water molecule to the right thus,
Hydrogen atom can be balanced by adding 1 hydrogen ion to the left thus,
Now, charge can be balanced by adding 1 electron to the left thus,
Net reaction can be obtained by adding reaction (3) and (4) thus,
Thus, the balanced chemical reaction is as follows:
Want to see more full solutions like this?
Chapter 18 Solutions
EBK INTRODUCTORY CHEMISTRY
- Don't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forward
- Reagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forwardNonearrow_forwardHow will you prepare the following buffers? 2.5 L of 1.5M buffer, pH = 10.5 from NH4Cl and NH3arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning