EBK INTRODUCTORY CHEMISTRY
EBK INTRODUCTORY CHEMISTRY
8th Edition
ISBN: 8220100480485
Author: DECOSTE
Publisher: CENGAGE L
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 44QAP
Interpretation Introduction

(a)

Interpretation:

The given half reaction should be balanced

Concept Introduction:

The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.

The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.

The following rules must be followed in balancing redox reaction by half equation method:

  1. Initially, redox reaction is separated into two half equations; oxidation and reduction.
  2. Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
  3. Oxygen atoms are balanced by addition of water on either side of the reaction.
  4. Hydrogen ion/s is added to balance the hydrogen atom.
  5. Electrons are added to balance the charge.
  6. Half reactions are added to get the net total equation.
  7. The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Expert Solution
Check Mark

Answer to Problem 44QAP

O2g+4H+aq+4eH2Ol+H2Ol.

Explanation of Solution

The given reaction is as follows:

O2gH2Ol

Oxygen atom is balanced by adding one water molecule on right side of the reaction arrow:

O2gH2Ol+H2Ol

Now, to balance hydrogen atoms, 4 hydrogen ions on left side of the reaction arrow.

O2g+4H+aqH2Ol+H2Ol

The last step is to balance the charge, to do so, 4 electrons can be added to left side of the reaction arrow as follows:

O2g+4H+aq+4eH2Ol+H2Ol

The above reaction is the balanced half reaction.

Interpretation Introduction

(b)

Interpretation:

The given half reaction should be balanced

Concept Introduction:

The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.

The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.

The following rules must be followed in balancing redox reaction by half equation method:

  1. Initially, redox reaction is separated into two half equations; oxidation and reduction.
  2. Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
  3. Oxygen atoms are balanced by addition of water on either side of the reaction.
  4. Hydrogen ion/s is added to balance the hydrogen atom.
  5. Electrons are added to balance the charge.
  6. Half reactions are added to get the net total equation.
  7. The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Expert Solution
Check Mark

Answer to Problem 44QAP

SO42aq+4H+aq+2eH2SO3aq+H2Ol.

Explanation of Solution

The given reaction is as follows:

SO42aqH2SO3aq

According to the rule, atom other than hydrogen and oxygen is balanced first. Here, sulfur atom is already balanced. Next step is to balance the oxygen and hydrogen atoms. To balance the oxygen atom, one water molecule can be added to right side of the reaction arrow thus,

SO42aqH2SO3aq+H2Ol

Now, to balance hydrogen atom, add 4 hydrogen ions to left side as follows:

SO42aq+4H+aqH2SO3aq+H2Ol

The net charge on left side will be + 2, to balance the charge add 2 electrons to the left thus,

SO42aq+4H+aq+2eH2SO3aq+H2Ol

The above reaction is the balanced half reaction.

Interpretation Introduction

(c)

Interpretation:

The given half reaction should be balanced

Concept Introduction:

The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.

The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.

The following rules must be followed in balancing redox reaction by half equation method:

  1. Initially, redox reaction is separated into two half equations; oxidation and reduction.
  2. Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
  3. Oxygen atoms are balanced by addition of water on either side of the reaction.
  4. Hydrogen ion/s is added to balance the hydrogen atom.
  5. Electrons are added to balance the charge.
  6. Half reactions are added to get the net total equation.
  7. The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Expert Solution
Check Mark

Answer to Problem 44QAP

H2O2aq+2H+aq+2e2H2Ol.

Explanation of Solution

The given reaction is as follows:

H2O2aqH2Ol

First 1 water molecule can be added to right side to balance the oxygen atom.

H2O2aqH2Ol+H2Ol

Next step is to balance the hydrogen atom, to do so, 2 hydrogen ions must be added to left side thus,

H2O2aq+2H+aqH2Ol+H2Ol

Last step is to balance the charge, there is + 2 charge on left side, to balance the charge 2 electrons must be added to left side of the reaction arrow thus,

H2O2aq+2H+aq+2e2H2Ol

The above reaction is the balanced half reaction.

Interpretation Introduction

(d)

Interpretation:

The given half reaction should be balanced

Concept Introduction:

The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.

The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.

The following rules must be followed in balancing redox reaction by half equation method:

  1. Initially, redox reaction is separated into two half equations; oxidation and reduction.
  2. Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
  3. Oxygen atoms are balanced by addition of water on either side of the reaction.
  4. Hydrogen ion/s is added to balance the hydrogen atom.
  5. Electrons are added to balance the charge.
  6. Half reactions are added to get the net total equation.
  7. The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Expert Solution
Check Mark

Answer to Problem 44QAP

NO2aq+H2OlNO3aq+2H+aq+2e.

Explanation of Solution

The given reaction is as follows:

NO2aqNO3aq

According to the rule, atom other than hydrogen and oxygen is balanced first. Here, nitrogen atom is already balanced. The next step is to balance the oxygen atom. To balance the oxygen atom, one water molecule should be added to left side of the reaction arrow.

Thus,

NO2aq+H2OlNO3aq

Now, to balance hydrogen atom, hydrogen ion is added to right side of the reaction. Since, there are 2 hydrogen atoms on the left side, 2 hydrogen ions should be added.

NO2aq+H2OlNO3aq+2H+aq

Next step is to balance the charge, there is + 1 charge on right side and -1 on the left, to balance the charge 2 electrons must be added to right side of the reaction arrow thus,

NO2aq+H2OlNO3aq+2H+aq+2e

The above reaction is the balanced half reaction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What are perovskites?
Briefly state the structural requirements of perovskites.
Show mechanism with explanation needed. don't give Ai generated solution. Avoid handwritten Solution

Chapter 18 Solutions

EBK INTRODUCTORY CHEMISTRY

Ch. 18 - Prob. 5ALQCh. 18 - Prob. 6ALQCh. 18 - In balancing oxidation-reduction equations, why is...Ch. 18 - What does it mean for a substance to be oxidized?...Ch. 18 - Label the following parts of the galvanic cell....Ch. 18 - Prob. 1QAPCh. 18 - Prob. 2QAPCh. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - Prob. 6QAPCh. 18 - Prob. 7QAPCh. 18 - Prob. 8QAPCh. 18 - Explain why, although it is not an ionic compound,...Ch. 18 - Prob. 10QAPCh. 18 - Prob. 11QAPCh. 18 - Prob. 12QAPCh. 18 - Prob. 13QAPCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 15QAPCh. 18 - Prob. 16QAPCh. 18 - . What is the oxidation state of chlorine in each...Ch. 18 - . What is the oxidation state of manganese in each...Ch. 18 - Prob. 19QAPCh. 18 - Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 21QAPCh. 18 - Prob. 22QAPCh. 18 - Prob. 23QAPCh. 18 - Prob. 24QAPCh. 18 - Prob. 25QAPCh. 18 - Prob. 26QAPCh. 18 - . Does an oxidizing agent donate or accept...Ch. 18 - Prob. 28QAPCh. 18 - Prob. 29QAPCh. 18 - Prob. 30QAPCh. 18 - Prob. 31QAPCh. 18 - Prob. 32QAPCh. 18 - Prob. 33QAPCh. 18 - Prob. 34QAPCh. 18 - Prob. 35QAPCh. 18 - Prob. 36QAPCh. 18 - Prob. 37QAPCh. 18 - Prob. 38QAPCh. 18 - Prob. 39QAPCh. 18 - Prob. 40QAPCh. 18 - Prob. 41QAPCh. 18 - Prob. 42QAPCh. 18 - Prob. 43QAPCh. 18 - Prob. 44QAPCh. 18 - . Balance each of the following...Ch. 18 - Prob. 46QAPCh. 18 - . Iodide ion, I- , is one of the most easily...Ch. 18 - Prob. 48QAPCh. 18 - Prob. 49QAPCh. 18 - Prob. 50QAPCh. 18 - . In which direction do electrons flow in a...Ch. 18 - Prob. 52QAPCh. 18 - . Consider the oxidation-reduction reaction...Ch. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 55QAPCh. 18 - Prob. 56QAPCh. 18 - Prob. 57QAPCh. 18 - Prob. 58QAPCh. 18 - Prob. 59QAPCh. 18 - Prob. 60QAPCh. 18 - Prob. 61QAPCh. 18 - Prob. 62QAPCh. 18 - . Although aluminum is one of the most abundant...Ch. 18 - . The “Chemistry in Focus” segment Water-Powered...Ch. 18 - Prob. 65APCh. 18 - Prob. 66APCh. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - Prob. 69APCh. 18 - Prob. 70APCh. 18 - Prob. 71APCh. 18 - Prob. 72APCh. 18 - Prob. 73APCh. 18 - . To obtain useful electrical energy from an...Ch. 18 - Prob. 75APCh. 18 - Prob. 76APCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - . The “pressure” on electrons to flow from one...Ch. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - Prob. 83APCh. 18 - . For each of the following unbalanced...Ch. 18 - Prob. 85APCh. 18 - Prob. 86APCh. 18 - Prob. 87APCh. 18 - . Balance each of the following...Ch. 18 - . Balance each of the following...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . Assign oxidation sates to all of the atoms in...Ch. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 94APCh. 18 - Prob. 95APCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 97APCh. 18 - . In each of the following reactions, identify...Ch. 18 - . Balance each of the following half-reactions....Ch. 18 - Prob. 100APCh. 18 - Prob. 101APCh. 18 - Prob. 102APCh. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 104APCh. 18 - Prob. 105CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY