VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
12th Edition
ISBN: 9781260265453
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.1, Problem 18.23P
(a)
To determine
Find the velocity
(b)
To determine
Find the angular velocity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. (17.21) A collar at point C with a mass of 1 kg is rigidly attached at a distance d = 300 mm from the end of a uniform
slender rod AB. The rod has a mass of 3 kg and has a length of L = 600 mm. Knowing that the rod is released from rest in
the position shown, determine the angular velocity of the rod after it has rotated through 90°.
Notes: Ignore rotation of the collar since its dimensions are negligible. The controidal moment of inertia of the rod is I =
m[²
12
L
d
Position 1
Position 1
B
B
A
Position 2
L
A'
ctivate Windows
5. Fig. 3 shows the overhead view of a uniform thin rod of length I and mass M that can rotate
freely about a fixed axis on a horizontal surface. The rod is at rest initially with moment of inertia
MI². A bullet of mass m is fired towards one end of the rod with initial velocity v. After
piercing the rod, the bullet's velocity is reduced to v. The angular velocity of the rod after
being shot through is ( )
3mv
А.
2ML
7mv
В.
4ML
overhead view
mv
C.
MI
Fig 3
D.
5mv
3MI
A bullet weighing 0.08 lb is fired with a horizontal velocity of 1800 ft/s into the lower end of a slender 15-lb bar of length L = 30 in. Knowing that h = 12 in. and that the bar is initially at rest, determine (a) the angular velocity of the bar immediately after the bullet becomes embedded, (b ) the impulsive reaction at C , assuming that the bullet becomes embedded in 0.001 s.
Chapter 18 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - A homogeneous disk of mass m = 8 kg rotates at the...Ch. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Determine the angular momentum HO of the disk of...
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.61PCh. 18.2 - Determine the rate of change HD of the angular...Ch. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - A model of a type of crusher is shown. A disk of...Ch. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - The propeller of an air boat rotates at 1800 rpm....Ch. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - A homogeneous rectangular plate of mass m and...Ch. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A long ladder of length l, mass m, and centroidal mass moment of inertia I is placed against a house at an angle 0=0O. Knowing that the ladder is released from rest, determine the angular velocity of the ladder when 0=02. Assume the ladder can slide freely on the horizontal ground and on the vertical wall.arrow_forwardA thin rectangular plate of weight 15 lb rotates about its vertical diagonal AB with an angular velocity V. Knowing that the z axis is perpendicular to the plate and that V is constant and equal to 5 rad/s, determine the angular momentum of the plate about its mass center G. B 12 in. 9 in. ANSWER : - (0.408 slug · ft²/s)i + (0.1398 slug · ft²/s)j.arrow_forwardANSWER: -(0.408 slug • ft2/s)i + (0.1398 slug • ft2/s)jarrow_forward
- A rod of uniform cross section is used to form the shaft shown. Denoting by m the total mass of the shaft and knowing that the shaft rotates with a constant angular velocity w, determine (a ) the angular momentum HG of the shaft about its mass center) the angle formed by HG and the axis AB, (c) the angular momentum of the shaft about point A.arrow_forwardA 6-lb homogeneous disk of radius 3 in. spins as shown at the constant rate w1 = 60 rad/s. The disk is supported by the fork-ended rod AB , which is welded to the vertical shaft CBD The system is at rest when a couple M0 is applied as shown to the shaft for 3 s and then removed. Knowing that the maximum angular velocity reached by the shaft is 18 rad/s, determine (a) the couple M0) the dynamic reactions at C and D after the couple has been removed.arrow_forwardTwo panels A and B are attached with hinges to a rectangular plate and held by a wire as shown. The plate and the panels are made of the same material and have the same thickness. The entire assembly is rotating with an angular velocity w0 when the wire breaks. Draw the impulse–momentum diagram that is needed to determine the angular velocity of the assembly after the panels have come to rest against the plate.arrow_forward
- Two uniform rods AB and CE, each of weight 3 lb and length 2 ft, are welded to each other at their midpoints. Knowing that this assembly has an angular velocity of constant magnitude w = 12 rad/s, determine the magnitude and direction of the angular momentum HD of the assembly about D.arrow_forward17.65 and 17.66 A 12-in.-radius cylinder of weight 16 lb rests on a 6-lb carriage. The system is at rest when a force P of magnitude 2.5 lb is applied as shown for 1.2 s. Knowing that the cylinder rolls without slid- ing on the carriage and neglecting the mass of the wheels of the carriage, determine the resulting velocity of (a) the carriage, (b) the center of the cylinder. Fig. P17.66 P Barrow_forwardA square plate of side a and mass m supported by a ball-and-socket joint at A is rotating about the y axis with a constant angular velocity ω = ω 0 j when an obstruction is suddenly introduced at B in the xy plane. Assuming the impact at B to be perfectly plastic (e = 0), determine immediately after the impact (a ) the angular velocity of the plate, (b ) the velocity of its mass center G.arrow_forward
- In the helicopter shown; a vertical tail propeller is used to pre- vent rotation of the cab as the speed of the main blades is changed. Assuming that the tail propeller is not operating determine the final angular velocity of the cab after the speed of the main blades has been changed from I80 to 240 rpm. (The speed of the main blades is measured relative to the cab, and the cab has a centroidal moment of inertia of 650 lb.ft.s2. Each of the four main blades is assumed to be a slender rod 14 ft weighing 55 lb.)arrow_forward4. Each of the gears A and B has a mass of 2.4 kg and a radius of gyration of 60 mm, while gear C has a mass of 12 kg and a radius of gyration of 150 mm. A couple M of constant magnitude 10 Nm is applied to gear C. Determine (a) the number of revolutions of gear C required for its angular velocity to increase from 100 to 450 rpm, (b) the corresponding tangential force acting on gear A. В S0 mm, S0 mm 200 mm. Marrow_forwardTwo circular plates, each of mass 4 kg, are rigidly connected by a rod AB of negligible mass and are suspended from point A as shown. Knowing that an impulse is applied at point D, determine (a) the velocity of the mass center G of the assembly, (B) the angular velocity of the assembly.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY