Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 9P
The Trans-Alaska pipeline is 1 300 km long, reaching from Prudhoe Bay to the port of Valdez. It experiences temperatures from −73°C to +35°C. How much does the steel pipeline expand because of the difference in temperature? How can this expansion be compensated for?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 18.1 - Prob. 18.1QQCh. 18.3 - Consider the following pairs of materials. Which...Ch. 18.4 - If you are asked to make a very sensitive glass...Ch. 18.4 - Prob. 18.4QQCh. 18.5 - A common material for cushioning objects in...Ch. 18.5 - On a winter day, you turn on your furnace and the...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Liquid nitrogen has a boiling point of 195.81C at...
Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - A copper telephone wire has essentially no sag...Ch. 18 - Prob. 8PCh. 18 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Why is the following situation impossible? A thin...Ch. 18 - A volumetric flask made of Pyrex is calibrated at...Ch. 18 - Review. On a day that the temperature is 20.0C, a...Ch. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - In state-of-the-art vacuum systems, pressures as...Ch. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - The pressure gauge on a cylinder of gas registers...Ch. 18 - Prob. 30APCh. 18 - Prob. 31APCh. 18 - Why is the following situation impossible? An...Ch. 18 - A student measures the length of a brass rod with...Ch. 18 - Prob. 34APCh. 18 - A liquid has a density . (a) Show that the...Ch. 18 - Prob. 36APCh. 18 - Prob. 37APCh. 18 - A bimetallic strip of length L is made of two...Ch. 18 - Prob. 39APCh. 18 - A vertical cylinder of cross-sectional area A is...Ch. 18 - Prob. 41APCh. 18 - Prob. 42APCh. 18 - Prob. 43APCh. 18 - Prob. 44CPCh. 18 - A 1.00-km steel railroad rail is fastened securely...Ch. 18 - Prob. 46CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The rectangular plate shown in Figure P16.60 has an area Ai equal to w. If the temperature increases by T, each dimension increases according to Equation 16.4, where is the average coefficient of linear expansion. (a) Show that the increase in area is A = 2Ai T. (b) What approximation does this expression assume?arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardAt what temperature is the average speed of carbon dioxide molecules ( M=44.0 g/mol) 510 m/s?arrow_forward
- A 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 52 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are P1 = 11 105 Pa and Vi = 8.0 cm3 while the final values are Pf = 1.0 105 Pa and Vf = 8.0 cm3. Friction between the projectile and the launch tube is negligible, (a) If the projectile is launched into a vacuum, what is the speed of the projectile as it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 105 Pa. what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down tile tube?arrow_forwardTwo cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardThe measurement of the average coefficient of volume expansion for a liquid is complicated because the container also changes size with temperature. Figure P19.62 shows a simple means for measuring despite the expansion of the container. With this apparatus, one arm of a U-tube is maintained at 0C in a water-ice bath, and the other arm is maintained at a different temperature Tc in a constant-temperature bath. The connecting tube is horizontal. A difference in the length or diameter of the tube between the two arms of the U-tube has no effect on the pressure balance at the bottom of the tube because the pressure depends only on the depth of the liquid. Derive an expression for for the liquid in terms of h0, hi and Tc.arrow_forward(a) Use the ideal gas equation to estimate the temperature at which 1.00 kg of steam (molar mass M=18.0 g/mol) at a pressure of 1.50106 Pa occupies a volume of 0.220 m3. (b) The van der Waals constants for water are a=0.5537 Pa m6/mol2 and b=3.049105 m3/mol. Use the Van der Waals equation of state to estimate the temperature under the same conditions. (c) The actual temperature is 779 K. Which estimate is better? `arrow_forward
- One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardA rubber balloon is filled with 1 L of air at 1 atm and 300 K and is then put into a cryogenic refrigerator at 100 K. The rubber remains flexible as it cools. (i) What happens to the volume of the balloon? (a) It decreases to 13L. (b) It decreases to 1/3L. (c) It is constant. (d) It increases to 3L. (e) It increases to 3 L. (ii) What happens to the pressure of the air in the balloon? (a) It decreases to 13atm. (b) It decreases to 1/3atm. (c) It is constant. (d) It increases to 3atm. (e) It increases to 3 atm.arrow_forwardTwo metal bars are made of invar and a third bar is made of aluminum. At 0C, each of the three bars is drilled with two holes 40.0 cm apart. Pins are put through the holes to assemble the bars into an equilateral triangle as in Figure P18.31. (a) First ignore the expansion of the invar. Find the angle between the invar bars as a function of Celsius temperature. (b) Is your answer accurate for negative as well as positive temperatures? (c) Is it accurate for 0C? (d) Solve the problem again, including the expansion of the invar. Aluminum melts at 660C and invar at 1 427C. Assume the tabulated expansion coefficients are constant. What are (e) the greatest and (f) the smallest attainable angles between the invar bars? Figure P18.31arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY