Interpretation:
The equilibrium pressure constant and temperature for the given reaction is to be calculated.
Concept introduction:
All the energy available with the system, utilized in doing useful work, is called Gibbs free energy.
Entropy is the direct measurement of randomness or disorder. It is an extensive property and a state function.
The enthalpy of the system defined as the sum of the internal energy and the product of the pressure and the volume. It is a state function and an extensive property.
The standard Gibbs free energy change for the given reaction at temperature is calculated using the following expression:
The standard enthalpy change of the reaction,
The standard entropy change for this reaction is calculated using the following expression:
The equilibrium pressure constant is calculated using expression as follows:
Answer to Problem 98QP
Solution: The equilibrium pressure constant for the given reaction is
At a temperature higher than
and
Explanation of Solution
Given information: The reaction is as follows:
Temperature,
The equation for the reaction of
The standard Gibbs free energy change for the given reaction at temperature
Here,
The standard enthalpy change of the system,
The standard enthalpy change of the reaction,
Here,
The enthalpy change for the reaction is as follows:
From appendix
Substitute the standard enthalpy change of the formation value of the substance in the above expression.
Therefore, the standard enthalpy changes for the given reaction are
The entropy change of the system,
The standard entropy change for this reaction is calculated using the following expression:
Here,
The entropy change for the reaction is as follows:
From appendix2, the standard entropy values of the substances are as follows:
Substitute the standard entropy values of the substances in the above expression.
Therefore, the standard entropy change for the given reaction is
The standard Gibbs free energy change for the given reaction at temperature
Here,
Substitutes the value of
Therefore, standard Gibbs free energy change for the given reaction is
The equilibrium pressure constant is calculated using expression as follows:
Here,
is the constant,
is the temperature,
Substitute the value of
Therefore, the equilibrium pressure constant for the given reaction is
Entropy change for this reaction is negative. The Gibbs free energy is positive at higher temperature.
The temperature is calculated using the following expression:
Here,
Substitute the value of
Therefore,
will be smaller than one. The reaction moves in the backward direction. The temperature higher than
On adding a catalyst to the reaction, the value of
The equilibrium pressure constant for the given reaction is
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry
- Which of the following compounds are constitutional isomers of each other? I and II O II and III O III and IV OI and IV O II and IV CI H CI H CI H H CI H-C-C-CI C-C-C-CI H-C-C-CI H-C-C-CI H CI Ĥ ĆI A A Ĥ ĆI || IVarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ1: Curved Arrows, Bronsted Acids & Bases, Lewis Acids & Bases Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Bronsted acids and bases in the left side of the reactions. Label conjugate acids and bases in the right side of the reactions. d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. + OH CH30: OH B. + HBr C. H₂SO4 D. CF 3. CH 3 + HCI N H fluoxetine antidepressant 1↓ JDownloadarrow_forward
- Don't used Ai solutionarrow_forwardPart 3: AHm,system Mass of 1.00 M HCI Vol. of 1.00 M HCI Mass of NaOH(s) Total Mass in Calorimeter Mole product if HCI limiting reactant Trial 1 62.4009 1.511g Mole product if NaOH limiting reactant Limiting reactant Initial Temperature Final Temperature 23.8°C 37.6°C Change in Temperature AHm,system (calculated) Average AHm,system (calculated) (calculated) (calculated) Trial 2 64.006g 1.9599 (calculated) (calculated) (calculated) (calculated) (calculated) (calculated) 24.7°C 41.9°C (calculated) (calculated) (2 pts. each)arrow_forwardDon't used Ai solutionarrow_forward
- What is the numerical value of the slope using the equation y=-1.823x -0.0162 please show calculationsarrow_forwardDon't used hand raitingarrow_forward1.) Using the graph below (including the line equation of y = -1.823x - 0.0162) What is the numerical value for the slope shown? 2.) What are the Unit(s) associated with the slope of the line shown? for we all remember that numerical data always has units. 3.) What would be a good title for this graph and explain your choice. 0.00 0.0 02 0.4 10.6 08 10 12 -0.20 -0.40 -0.60 -0.80 Temp, freezing, in degrees Celcius 5-1.00 -1.20 -1.40 -1:60 y=-1.823x-0.0162 -180 -2.00 Concentration of Sucrose (m)arrow_forward
- Don't used Ai solutionarrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling. Please label in the image, so it fits explanation. I am still very unsure I undertand this.arrow_forwardDon't used Ai solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning