Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 38QP
Interpretation Introduction
Interpretation:
The difference between
Concept introduction:
The change in free energy,
At Standard Temperature and Pressure, STP,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry
Ch. 18.1 - Practice Problem ATTEMPT
Determine the change in...Ch. 18.1 - Practice Problem BUILD To what fraction of its...Ch. 18.1 - Practice Problem CONCEPTUALIZE
Which equation is...Ch. 18.2 - Practice ProblemATTEMPT Calculate the standard...Ch. 18.2 - Practice Problem BUILD
In each of the following...Ch. 18.2 - Practice Problem CONCEPTUALIZE
For each reaction...Ch. 18.3 - Practice ProblemATTEMPT For each of the following...Ch. 18.3 - Practice Problem BUILD
Make a qualitative...Ch. 18.3 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 18.3 - 18.3.1 For which of the following physical...
Ch. 18.3 - 18.3.2 For which of the following chemical...Ch. 18.3 - 18.3.3 Identify the correct balanced equation and...Ch. 18.4 - Practice Problem ATTEMPT For each of the...Ch. 18.4 - Practice Problem BUILD (a) Calculate Δ S univ and...Ch. 18.4 - Practice Problem CONCEPTUALIZE The following table...Ch. 18.4 - Using data from Appendix 2, calculate Δ S ° (in...Ch. 18.4 - 18.4.2 Using data from Appendix 2, calculate (in...Ch. 18.4 - The diagrams show a spontaneous chemical reaction....Ch. 18.4 - 18.4.4 The diagrams show a spontaneous chemical...Ch. 18.5 - Practice Problem ATTEMPT
A reaction will be...Ch. 18.5 - Practice Problem BUILD
Given that the reaction is...Ch. 18.5 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 18.5 - A reaction for which Δ H and Δ S are both negative...Ch. 18.5 - At what temperature ( in ºC ) does a reaction go...Ch. 18.5 - 18.5.3 Using data from Appendix 2, calculate G°...Ch. 18.5 - 18.5.4 Calculate for the sublimation of iodine in...Ch. 18.6 - Practice Problem ATTEMPT
Calculate the standard...Ch. 18.6 - Practice problemBUILD For each reaction, determine...Ch. 18.6 - Prob. 1PPCCh. 18.6 - 18.6.1 For the reaction:
Ch. 18.6 - Consider the reaction: X ( g ) + Y(g) ⇄ Z( g ) for...Ch. 18.6 - The Δ G° for the reaction: N 2 ( g ) + 3H 2 (g) ⇄...Ch. 18.6 - 18.6.4 The for iron(III) hydroxide . For the...Ch. 18.7 - Practice Problem ATTEMPT
The molar heats of fusion...Ch. 18.7 - Practice Problem CONCEPTUALIZE
Explain why. in...Ch. 18.8 - Practice ProblemATTEMPT Δ G ° for the reaction: H...Ch. 18.8 - Practice ProblemBUILD What is the minimum partial...Ch. 18.8 - Practice Problem CONCEPTUALIZE Consider the...Ch. 18.9 - Practice Problem ATTEMPT Using data from Appendix...Ch. 18.9 - Practice ProblemBUILD K f for the complex ion Ag (...Ch. 18.9 - Practice Problem CONCEPTUALIZE Which of the...Ch. 18.10 - Practice ProblemATTEMPT Calculate G for the...Ch. 18.10 - Practice ProblemBUILD Ksp for Co(OH)2 at...Ch. 18.10 - Prob. 1PPCCh. 18 - 18.1
Which of the following must be negative for a...Ch. 18 - Δ G for a reaction is always negative when (a) Δ G...Ch. 18 - 18.3
The diagram shown here depicts a system at...Ch. 18 - The reaction shown here has Δ G º = -1 .83 kJ/mol...Ch. 18 - 18.1 Explain what is meant by a spontaneous...Ch. 18 - Prob. 2QPCh. 18 - Prob. 3QPCh. 18 - Describe what is meant by the term entropy. What...Ch. 18 - Prob. 5QPCh. 18 - Prob. 6QPCh. 18 - Prob. 7QPCh. 18 - Prob. 8QPCh. 18 - How does the entropy of a system change for each...Ch. 18 - Prob. 10QPCh. 18 - Prob. 11QPCh. 18 - Prob. 12QPCh. 18 - Prob. 13QPCh. 18 - Using the data in Appendix 2, calculate the...Ch. 18 - 18.15 Using the data in Appendix 2, calculate the...Ch. 18 - Prob. 16QPCh. 18 - Prob. 17QPCh. 18 - Prob. 18QPCh. 18 - 18.19 State the third law of thermodynamics in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Using data from Appendix 2, calculate Δ S rxn º...Ch. 18 - 18.23 Using data from Appendix 2, calculate for...Ch. 18 - Prob. 24QPCh. 18 - Why is it more convenient to predict the direction...Ch. 18 - What is the significance of the sign of Δ G sys ?Ch. 18 - From the following combinations of Δ H and Δ S ,...Ch. 18 - Prob. 28QPCh. 18 - Prob. 29QPCh. 18 - From the values of Δ H and Δ S , predict which of...Ch. 18 - Find the temperatures at which reactions with the...Ch. 18 - The molar heats of fusion and vaporization of...Ch. 18 - 18.33 The molar heats of fusion and vaporization...Ch. 18 - Prob. 34QPCh. 18 - Prob. 35QPCh. 18 - Prob. 36QPCh. 18 - Prob. 37QPCh. 18 - Prob. 38QPCh. 18 - Explain why Equation 18.14 is of great importance...Ch. 18 - Prob. 40QPCh. 18 - Prob. 41QPCh. 18 - Prob. 42QPCh. 18 - 18.43 Consider the following reaction at...Ch. 18 - Prob. 44QPCh. 18 - 18.45
(a)
Calculate and for the following...Ch. 18 - Prob. 46QPCh. 18 - Consider the decomposition of calcium carbonate:...Ch. 18 - Prob. 48QPCh. 18 - 18.49 At for the process:
is 8.6 kJ/mol....Ch. 18 - Prob. 50QPCh. 18 - What is a coupled reaction? What is its importance...Ch. 18 - What is the role of ATP in biological reactions?Ch. 18 - Prob. 53QPCh. 18 - 18.54 In the metabolism of glucose, the first step...Ch. 18 - Predict the signs of Δ H , Δ S , and Δ G of the...Ch. 18 - Prob. 56APCh. 18 - Prob. 57APCh. 18 - Prob. 58APCh. 18 - Prob. 59APCh. 18 - Prob. 60APCh. 18 - Ammonium nitrate ( NH 4 NO 3 ) dissolves...Ch. 18 - 18.62 Calculate the equilibrium pressure of due...Ch. 18 - Prob. 63APCh. 18 - Referring to Problem 18.63, explain why the ratio...Ch. 18 - 18.65 Which of the following are not state...Ch. 18 - 18.66 For reactions carried out under...Ch. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - A student looked up the Δ G f o , Δ H f o , and Δ...Ch. 18 - Consider the following Brønsted acid-base reaction...Ch. 18 - 18.71 At o K, the entropy of carbon monoxide...Ch. 18 - Prob. 72APCh. 18 - Consider the thermal decomposition of CaCO 3 :...Ch. 18 - Prob. 74QPCh. 18 - Prob. 75QPCh. 18 - Prob. 76QPCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - Prob. 79APCh. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - 18.83 Comment on the statement: “Just talking...Ch. 18 - Prob. 84APCh. 18 - Consider the reaction: N 2 ( g ) + O 2 ( g ) ⇄ 2...Ch. 18 - Prob. 86APCh. 18 - Consider the decomposition of magnesium carbonate:...Ch. 18 - Prob. 88APCh. 18 - Prob. 89APCh. 18 - 18.90 The rate constant for the elementary...Ch. 18 - A 74.6-g ice cube floats in the Arctic Sea. The...Ch. 18 - 18.92 Which of the following is not accompanied by...Ch. 18 - Prob. 93APCh. 18 - Give a detailed example of each of the following,...Ch. 18 - Prob. 95QPCh. 18 - 18.96 The standard enthalpy of formation and the...Ch. 18 - Prob. 97QPCh. 18 - Prob. 98QPCh. 18 - The following reaction was described as the cause...Ch. 18 - Comment on the feasibility of extracting copper...Ch. 18 - 18.101 One of the steps in the extraction of iron...Ch. 18 - Prob. 102APCh. 18 - Prob. 103APCh. 18 - Prob. 104APCh. 18 - 18.105 The enthalpy change in the denaturation of...Ch. 18 - Prob. 106APCh. 18 - Prob. 107APCh. 18 - Prob. 108APCh. 18 - Prob. 109APCh. 18 - Prob. 110APCh. 18 - 18.111 Carbon monoxide and nitric oxide are...Ch. 18 - Prob. 112APCh. 18 - Prob. 113APCh. 18 - 18.114 Many hydrocarbons exist as structural...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Prob. 3SEPPCh. 18 - Physical and Biological Sciences
In chemistry, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Silver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forwardWhich contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forwardFor each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forward
- Explain how the entropy of the universe increases when an aluminum metal can is made from aluminum ore. Thefirst step is to extract the ore, which is primarily a formof A12O3, from the ground. After it is purified by freeingit from oxides of silicon and iron, aluminum oxide ischanged to the metal by an input of electrical energy. 2Al2O3(s)electricalenergy4Al(s)+3O2(g)arrow_forwardConsider the reaction CO(g)+H2O(g)CO2(g)+H2(g) Use the appropriate tables to calculate (a) G at 552C (b) K at 552Carrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- Elemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 32 H2(g) B(s) + 3 HCl(g) Calculate rH, rS, and rG at 25 C for this reaction. Is the reaction predicted to be product-favored at equilibrium at 25 C? If so, is it enthalpy- or entropy-driven? [S for B(s) is 5.86 J/K mol.]arrow_forwardElemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 3/2 H2(g) B(s) + 3HCl(g) Calculate H, S, and G at 25 C for this reaction. Is the reaction predicted to be product favored at equilibrium at 25 C? If so, is it enthalpy driven or entropy driven?arrow_forwardGiven the following information at 25C, calculate G at 25C for the reaction 2A(g)+B(g)3C(g) Substance Hf(kJ/mol) S(J/molK) A(g) 191 244 B(g) 70.8 300 C(g) 197 164 a 956 kJ b 956 kJ c 346 kJ d 346 kJ e 1.03 103 kJarrow_forward
- Tetrachloromethane (carbon tetrachloride), CCl4, has a normal boiling point of 76.7C and an enthalpy of vaporization, Hvap, of 29.82 kJ/mol. Estimate the entropy of vaporization, Svap. Estimate the free energy of vaporization, Gvap, at 25C.arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forwardConsider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY