
The total work done by the gas and heat absorbed by gas in each portion of cycle.

Answer to Problem 76P
The total work done is
Explanation of Solution
Given:
The initial pressure is
The temperature is
Formula used:
The expression for volume at D is given by,
The expression for pressure at point C is given by,
The expression for temperature at point A and B is given by,
The expression for heat absorbed at D is given by,
The expression for heat absorbed at A is given by,
The expression for heat absorbed at B is given by,
The expression for heat absorbed at C is given by,
The expression for total work done is given by,
Calculation:
The volume at point D is calculated as,
The pressure at point C is calculated as,
The temperature at point A and B is calculated as,
The heat absorbed at point D is calculated as,
The heat absorbed at point A is calculated as,
The heat absorbed at point B is calculated as,
The heat absorbed at point C is calculated as,
The total work done is calculated as,
Conclusion:
Therefore, the total work done is
Want to see more full solutions like this?
Chapter 18 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





