
(a)
The final temperature, volume, work done and heat absorbed if the expansion is isothermal.
(a)

Answer to Problem 70P
The final temperature, volume, work done and heat absorbed are
Explanation of Solution
Given:
The initial pressure is
The final pressure is
The initial temperature is
Formula used:
The expression for initial volume is given by,
The expression for final volume is given by,
The expression for work done is given by,
The expression for heat absorbed is given by,
Calculation:
The temperature remains same for an isothermal expansion.
The initial volume is calculated as,
The final volume is calculated as,
The work done by gas is calculated as,
The heat absorbed is calculated as,
Conclusion:
Therefore, the final temperature, volume, work done and heat absorbed are
(b)
The final temperature, volume, work done and heat absorbed if the expansion is adiabatic.
(b)

Answer to Problem 70P
The final temperature, volume, work done and heat absorbed are
Explanation of Solution
Formula used:
The expression for final temperature is given by,
The expression for final volume is given by,
The expression for work done is given by,
Calculation:
The final volume is calculated as,
The final temperature is calculated as,
The work done by gas is calculated as,
The heat absorbed is zero in case of adiabatic process.
Conclusion:
Therefore, the final temperature, volume, work done and heat absorbed are
Want to see more full solutions like this?
Chapter 18 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning




