
(a)
The PV diagram for each process in the cycle.
(a)

Answer to Problem 72P
The required PV diagram is shown in Figure 1.
Explanation of Solution
Given data:
The amount
The temperature
The pressure
The pressure
The temperature
The pressure
The temperature
The pressure
The temperature
The pressure
The temperature
Formula:
The expression to determine the initial volume of the gas is given by,
The volume of the gas after the adiabatic process is given by,
The expression for the temperature of the gas after adiabatic process is given by,
The volume of the gas after the isobaric process is given by,
The expression to determine the temperature of the gas after the isometric expansion is given by,
The expression for the volume of the gas after the isobaric process is given by,
Calculation:
The initial volume of the gas is calculated as,
The volume of the gas after the adiabatic process is calculated as,
The temperature of the gas after adiabatic process is calculated as,
Solve further as,
The volume of the gas after the isobaric process is calculated as,
The expression to determine the temperature of the gas after the isometric expansion is given by,
The expression for the volume of the gas after the isobaric process is given by,
From the above calculations the PV diagram for the different process is shown below.
The required diagram is shown in Figure 1
Figure 1
Conclusion:
Therefore, the required PV diagram is shown in Figure 1.
(b)
The work done by the gas during the complete cycle.
(b)

Answer to Problem 72P
The work done in the complete cycle is
Explanation of Solution
Formula Used:
The expression to determine the work done by the gas from
The expression to determine the work done by the gas from
The expression to determine the work done by the gas from
The expression for the total work during the complete cycle is given by,
Calculation:
The total work during the complete cycle is calculated as,
Solve further as,
Conclusion:
Therefore, the work done in the complete cycle is
(c)
The heat absorbed by the gas during the complete cycle.
(c)

Answer to Problem 72P
The heat absorbed by the gas is
Explanation of Solution
Formula:
The expression for the first law of
Calculation:
The heat absorbed by the gas is calculated as,
Conclusion:
Therefore, the heat absorbed by the gas is
Want to see more full solutions like this?
Chapter 18 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





