PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 69P

(a)

To determine

The final temperature, volume, work done and heat absorbed if the expansion is isothermal.

(a)

Expert Solution
Check Mark

Answer to Problem 69P

The final temperature, volume, work done and heat absorbed are 300K , 7.80L , 1.14kJ and 1.14kJ respectively.

Explanation of Solution

Given:

The initial pressure is 400kPa .

The final pressure is 160kPa

The initial temperature is 300K .

Formula used:

The expression for initial volume is given by,

  Vi=nRTP

The expression for final volume is given by,

  Vf=ViPiPf

The expression for work done is given by,

  Wbygas=nRTlnVfVi

The expression for heat absorbed is given by,

  Qin=ΔEint+Wbygas

Calculation:

The temperature remains same for an isothermal expansion.

The initial volume is calculated as,

  Vi=nRTP=( 0.5mol)( 8.314J/ mol K)( 300K)400kPa=(( 3.12× 10 3 m 3 )( 10 3 L 1 m 3 ))=3.12L

The final volume is calculated as,

  Vf=ViPiPf=(3.12L)( 400kPa 160kPa)=7.80L

The work done by gas is calculated as,

  Wbygas=nRTlnVfVi=(0.5mol)(8.314J/molK)(300K)ln( 7.80L 3.12L)=(( 1.14× 10 3 J)( 10 3 kJ 1J ))=1.14kJ

The heat absorbed is calculated as,

  Qin=ΔEint+Wbygas=0+(1.14kJ)=1.14kJ

Conclusion:

Therefore, the final temperature, volume, work done and heat absorbed are 300K , 7.80L , 1.14kJ and 1.14kJ respectively.

(b)

To determine

The final temperature, volume, work done and heat absorbed if the expansion is adiabatic.

(b)

Expert Solution
Check Mark

Answer to Problem 69P

The final temperature, volume, work done and heat absorbed are 208K , 5.41L , 574J and 0 respectively.

Explanation of Solution

Formula used:

The expression for final temperature is given by,

  Tf=PfVfnR

The expression for final volume is given by,

  Vf=Vi( P i P f )r

The expression for work done is given by,

  W=32nRΔT

Calculation:

The final volume is calculated as,

  Vf=Vi( P i P f )r=(3.12L)( 400kPa 160kPa)35=5.41L

The final temperature is calculated as,

  Tf=PfVfnR=( 160kPa)( ( 5.41L )( 10 3 m 3 1L ))( 0.5mol)( 8.314J/ mol K)=208K

The work done by gas is calculated as,

  W=32nRΔT=32(0.5mol)(8.314J/molK)(300K280K)=574J

The heat absorbed is zero in case of adiabatic process.

Conclusion:

Therefore, the final temperature, volume, work done and heat absorbed are 208K , 5.41L , 574J and 0 respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-
No chatgpt pls will upvote
SARET CRKS AUTOWAY 12. A stone is dropped from the top of a cliff. It is seen to hit the ground below after 3.55 s. How high is the cliff? 13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming no air resistance, what is the speed of the ball just before it strikes the ground? 14. Estimate (a) how long it took King Kong to fall straight down from the top of the Empire State Building (280m high), and (b) his velocity just before "landing". Useful equations For Constant Velocity: V => D X = V₁t + Xo For Constant Acceleration: Vr = V + at X = Xo+Vot + v=V+2a(X-Xo) \prom = V +V V velocity t = time D Distance X = Final Position Xo Initial Position V = Final Velocity Vo Initial Velocity a = acceleration For free fall Yf = Final Position Yo Initial Position g = 9.80 m $2 For free fall: V = V + gt Y=Yo+Vo t + +gt V,² = V₁²+2g (Y-Yo) V+Vo Vprom= 2 6

Chapter 18 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Ch. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - Prob. 72PCh. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 82PCh. 18 - Prob. 83PCh. 18 - Prob. 84PCh. 18 - Prob. 85PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - Prob. 89PCh. 18 - Prob. 90PCh. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 93PCh. 18 - Prob. 94PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY