Concept explainers
(a)
The expression for the radius of the sphere in the water.
(a)
Answer to Problem 73AP
The expression for the radius of the sphere in the water is
Explanation of Solution
Write the expression for tension in the string (Refer Figure 18.11a).
Here,
Write the expression for tension on the string included the buoyant force on the sphere (Refer Figure 18.11b).
Here,
Write the expression for the buoyant force acts on the sphere.
Here,
Write the expression for volume of the sphere.
Here,
Write the expression for the frequency of the oscillation.
Here,
Write the expression for the fundamental frequency of the oscillation.
Write the expression for frequency of the two antinodes formed on the string.
Conclusion:
Substitute the equation (III) and (IV) in equation (II).
Rewrite the equation (V) and (VI).
Substitute equation (I) in the above equation.
Substitute equation (VII) in the above equation.
Solve the above relation for radius.
Substitute
Therefore, the expression for the radius of the sphere in the water is
(b)
The minimum allowed value of n.
(b)
Answer to Problem 73AP
The minimum allowed value of n is
Explanation of Solution
The factor inside the cubic root is,
Conclusion:
Since the above factor will be either zero or negative which are meaningless results, for
Therefore, the minimum allowed value of n is
(c)
The radius of the largest sphere producing a standing wave on the string.
(c)
Answer to Problem 73AP
The radius of the largest sphere producing a standing wave on the string is
Explanation of Solution
The mass of the sphere is held constant while its radius is changed, there will reach a point where the density of the sphere reaches the density of the water, and then the sphere will float on the water.
Write the expression for the density of the sphere.
Here,
Rearrange the above solution for r.
Conclusion:
Substitute
Therefore, the radius of the largest sphere producing a standing wave on the string is
(d)
Can larger sphere is used, what will happen.
(d)
Answer to Problem 73AP
The sphere floats on the water.
Explanation of Solution
The mass of the sphere is held constant while its radius is changed, it will reach a point where the density of the sphere reaches the density of the water, and then the sphere will float on the water.
Conclusion:
If the large sphere is used, then the sphere will float on the water.
Want to see more full solutions like this?
Chapter 18 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning