Starting Out with C++ from Control Structures to Objects, Student Value Edition (9th Edition)
Starting Out with C++ from Control Structures to Objects, Student Value Edition (9th Edition)
9th Edition
ISBN: 9780134443829
Author: Tony Gaddis
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 6PC
Program Plan Intro

Member Insertion by Position

Program Plan:

“IntList.h”:

  • Include the required specifications into the program.
  • Define a class named “IntList”.
    • Declare the member variables “value” and “*next” in structure named “ListNode”.
    • Declare the constructor, copy constructor, destructor, and member functions in the class.

“IntList.cpp”:

  • Include the required header files into the program.
  • Define a copy constructor named “IntList()” which takes an address of object for the “IntList” class as “const”.
    • Declare a structure pointer variable “nodePtr” and initialize it to be “nullptr”.
    • Assign “obj.head” value into the received variable “nodePtr”.
    • Make a “while” loop to copy the received values into “nodePtr”.
      •  Make a call to “appendNode()” to insert values to “nodePtr” and initialize address of “next” into “nodePtr”.
  • Define a function named “appendNode()” to insert the node at end of the list.
    • Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
    • Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
    • Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
    • Assign the value of “dataPtr” into the variable “newNode”.
  • Define a function named “print()”to print the values in the list.
    • Declare the structure pointer “dataPtr” for the structure named “ListNode”.
    • Initialize the variable “dataPtr” with the “head” pointer.
    • Make a loop “while” to display the values of the list.
  • Define a function named “insertNode()” to insert a value into the list.
    • Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
    • Make a “newNode” value into the received variable value “num”.
    • Use “if…else” condition to check whether the list is empty or not.
      • If the list is empty then initialize “head” pointer with the value of “newNode” variable.
      • Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
      • Use “if…else” condition to initialize the value into list.
  • Define a function named “deleteNode()” to delete a value from the list.
    • Declare the structure pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
    • Use “if…else” condition to check whether the “head” value is equal to “num” or not.
      • Initialize the variable “dataPtr” with the value of the variable “head”.
      • Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
      • If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
      • Use “if” condition to delete the “prev” pointer.
  • Define a function named “reverse()” to reverse the values in a list.
    • Declare the pointer variables “newNode”, “newHead”, “nodePtr”, and “tempPtr” for the structure named “ListNode”.
    • Initialize the variable “nodePtr” with the value of the variable “head”.
    • Define a “while” loop to allocate “newNode” variable.
      • Create a “newNode” for the structure “ListNode”.
      • Store the value of “nodePtr” into “newNode” and assign address as null to the “newNode” pointer.
      • Using “if…else” condition swap the values of “newHead” and “newNode”.
        • Assign the address of “next” node into “nodePtr”.
      • Initialize the variable “head” with the value of the variable “newHead”.
  • Define a function named “destroy()” to destroy the list values from the memory.
    • Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
    • Initialize the “head” value into the “dataPtr”.
    • Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.
  • Define a function “search()” to find the argument value of “num” in the list.
    • Declare a variable “count” in type of “int”.
    • Declare a structure pointer variable “*dataPtr” for the structure named “ListNode”.
    • Define a “while” loop to search the value in the list.
      • Using “if…else” statement, check the value of “dataPtr” in the list.
        • If the condition is “true”, return the value “count” variable.
        • Otherwise, point the “next” value of “dataPtr” and then increment the value of “count” variable.
    • Return a value “-1” to the function call.
  • Define a function named “insert()” with the arguments of “value” and “pos” to insert a value at specified location.
    • Declare a pointer variable “newNode” for the structure “ListNode”.
    • Assign the value of received variable “value” into “newNode” value and make address of “newNode” into “nullptr”.
    • Using “if” condition to check whether the list is empty or not.
      • If list is empty, initialize the variable “head” with the value of the variable “newNode”.
    • Using “if” condition to insert the value of received variable “pos” into the list.
      • Assign the “head” node into address of “newNode” .
      • Initialize the variable “head” with the value of the variable “newNode”.
      • Using “while” loop to insert the value at specified position in the list.
  • Define the destructor to call the member function “destroy()” in the list.

“Main.cpp”:

  • Include the required header files into the program.
  • Declare an object named “obj” for the class “IntList”.
  • Make a call to functions for insert and append operations.
  • Make a call to the “print()” function to display the list on the screen.
  • Make a call to “insert()” function to insert a value with position and print the list using “print()” function.

Blurred answer
Students have asked these similar questions
Just wanted to know, if you had a scene graph, how do you get multiple components from a specific scene node within a scene graph? Like if I wanted to get a component from wheel from the scene graph, does that require traversing still?   Like if a physics component requires a transform component and these two component are part of the same scene node. How does the physics component knows how to get the scene object's transform it is attached to, this being in a scene graph?
How to develop a C program that receives the message sent by the provided program and displays the name and email included in the message on the screen?Here is the code of the program that sends the message for reference: typedef struct {    long tipo;    struct {        char nome[50];        char email[40];    } dados;} MsgStruct; int main() {    int msg_id, status;    msg_id = msgget(1000, 0600 | IPC_CREAT);    exit_on_error(msg_id, "Creation/Connection");    MsgStruct msg;    msg.tipo = 5;    strcpy(msg.dados.nome, "Pedro Silva");    strcpy(msg.dados.email, "pedro@sapo.pt");    status = msgsnd(msg_id, &msg, sizeof(msg.dados), 0);    exit_on_error(status, "Send");    printf("Message sent!\n");}
9. Let L₁=L(ab*aa), L₂=L(a*bba*). Find a regular expression for (L₁ UL2)*L2. 10. Show that the language is not regular. L= {a":n≥1} 11. Show a derivation tree for the string aabbbb with the grammar S→ABλ, A→aB, B→Sb. Give a verbal description of the language generated by this grammar.
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage