Starting Out with C++ from Control Structures to Objects, Student Value Edition (9th Edition)
Starting Out with C++ from Control Structures to Objects, Student Value Edition (9th Edition)
9th Edition
ISBN: 9780134443829
Author: Tony Gaddis
Publisher: PEARSON
Question
Book Icon
Chapter 18, Problem 9PC
Program Plan Intro

Rainfall Statistics Modification

Program Plan:

IntList.h:

  • Include the required specifications into the program.
  • Define a class template named “IntList”.
    • Declare the member variables “value” and “*next” in structure named “ListNode”.
    • Declare the constructor, copy constructor, destructor, and member functions in the class.
  • Declare a class template and define a function named “appendNode()” to insert the node at end of the list.
    • Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
    • Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
    • Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
      • Assign the value of “newNode” into the variable “dataPtr”.
  • Declare a class template and define a function named “print()” to print the values in the list.
    • Declare the structure pointer “dataPtr” for the structure named “ListNode”.
    • Initialize the variable “dataPtr” with the “head” pointer.
    • Check whether the list is empty or not; if the list is empty then display the values of the list.
  • Declare a class template and define a function named “insertNode()” used to insert a value into the list.
    • Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
    • Make a “newNode” value into the received variable value “num”.
    • Using “if…else” condition to check whether the list is empty or not.
      • If the list is empty then initialize “head” pointer with the value of “newNode” variable.
      • Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
        • Use “if…else” condition to initialize the value into list.
  • Declare a class template and define a function named “deleteNode()” to delete a value from the list.
    • Declare the pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
    • Using “if…else” condition to check whether the “head” value is equal to “num” or not.
      • Initialize the variable “dataPtr” with the value of the variable “head”.
      • Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
      • If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
        • Use “if” condition to delete the “prev” pointer.
  • Declare a class template and define a function named “getTotal()” to calculate total value in a list.
    • Define a variable named “total” and initialize it to “0” in type of template.
    • Define a pointer variable “nodePtr” for the structure “ListNode” and initialize it to be “NULL”.
    • Assign the value of “head” pointer into “nodePtr”.
    • Define a “while” loop to calculate “total” value of the list.
    • Return a value of “total” to the called function.
  • Declare a class template and define a function named “numNodes()” to find the number of values that are presented in the list.
    • Declare a variable named “count” in type of “integer”.
    • Define a pointer variable “nodePtr” and initialize it to be “NULL”.
    • Assign a pointer variable “head” to the “nodePtr”.
    • Define a “while” loop to traverse and count the number of elements in the list.
  • Declare a class template and define a function named “getAverage()”to find an average value of elements that are presented in list.
  • Declare a class template and define a function named “getLargest()”to find largest element in the list.
    • Declare a template variable “largest” and pointer variable “nodePtr” for the structure.
    • Using “if” condition, assign the value of “head” into “largest” variable.
    • Using “while” loop, traverse the list until list will be empty.
      • Using “if” condition, check whether the value of “nodePtr” is greater than the value of “largest” or not.
      • Assign address of “nodePtr” into “nodePtr”.
    • Return a value of “largest” variable to the called function.
  • Declare a class template and define a function named “getSmallest()” to find largest element in the list.
    • Declare a template variable “smallest” and pointer variable “nodePtr” for the structure.
    • Using “if” condition, assign the value of “head” into “smallest” variable.
    • Using “while” loop, traverse the list until list will be empty.
      • Using “if” condition, check the value of “nodePtr” is smaller than the value of “smallest”.
      • Assign address of “nodePtr” into “nodePtr”.
    • Return a value of “smallest” variable to the called function.
  • Declare a class template and define a function named “getSmallestPosition()” to find the position of smallest value in the list.
    • Declare a template variable “smallest” and pointer variable “nodePtr” for the structure.
    • Using “while” loop traverses the list until the list will be empty.
      • Using “if” condition, find the position of “smallest” value in the list.
    • Return the value of “position” to the called function.
  • Declare a class template and define a function named “getLargestPosition()” to find the position of largest value in the list.
    • Declare a template variable “largest” and pointer variable “nodePtr” for the structure.
    • Using “while” loop traverses the list until the list will be empty.
      • Using “if” condition, find the position of “largest” value in the list.
    • Return the value of “position” to the called function.
  • Define the destructor to destroy the values in the list.
    • Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
    • Initialize the “head” value into the “dataPtr”.
    • Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.

main.cpp:

  • Include the required header files into the program.
  • Declare a variable “months” in type of integer.
  • Read the value of “months” from user and using “while” loop to validate the data entered by user.
  • Declare an object named “rainfall” for the class “IntList”.
  • Using “for” loop, read an input for every month from user.
    • Append the value entered from user into the list.
  • Make a call to “getTotal()”, “getAverage()”, “getLargest()”, “getSmallest()”, “getLargestPosition()”, and “getSmallestPosition()” function and display the values on the screen.

Blurred answer
Students have asked these similar questions
Hands-On Assignments Part II Assignment 1-5: Querying the DoGood Donor Database Review the DoGood Donor data by writing and running SQL statements to perform the following tasks: 1. List each donor who has made a pledge and indicated a single lump sum payment. Include first name, last name, pledge date, and pledge amount. 2. List each donor who has made a pledge and indicated monthly payments over one year. Include first name, last name, pledge date, and pledge amount. Also, display the monthly payment amount. (Equal monthly payments are made for all pledges paid in monthly payments.) 3. Display an unduplicated list of projects (ID and name) that have pledges committed. Don't display all projects defined; list only those that have pledges assigned. 4. Display the number of pledges made by each donor. Include the donor ID, first name, last name, and number of pledges. 5. Display all pledges made before March 8, 2012. Include all column data from the DD PLEDGE table.
Write a FancyCar class to support basic operations such as drive, add gas, honk horn, and start engine. FancyCar.java is provided with method stubs. Follow each step to gradually complete all methods. Note: This program is designed for incremental development. Complete each step and submit for grading before starting the next step. Only a portion of tests pass after each step but confirm progress. The main() method includes basic method calls. Add statements in main() as methods are completed to support development mode testing. Step 0. Declare private fields for miles driven as shown on the odometer (int), gallons of gas in tank (double), miles per gallon or MPG (double), driving capacity (double), and car model (String). Note the provided final variable indicates the gas tank capacity of 14.0 gallons. Step 1 (2 pts). 1) Complete the default constructor by initializing the odometer to five miles, tank is full of gas, miles per gallon is 24.0, and the model is "Old Clunker". 2)…
Find the error: daily_sales = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] days_of_week = ['Sunday', 'Monday', 'Tuesday',                     'Wednesday', 'Thursday', 'Friday',                     'Saturday'] for i in range(7):         daily_sales[i] = float(input('Enter the sales for ' \                                      + day_of_week[i] + ': ')
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Programming with Microsoft Visual Basic 2017
Computer Science
ISBN:9781337102124
Author:Diane Zak
Publisher:Cengage Learning
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr